| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimbr.k | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 2 |  | xlimbr.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | xlimbr.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 4 |  | xlimbr.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 5 |  | xlimbr.j | ⊢ 𝐽  =  ( ordTop ‘  ≤  ) | 
						
							| 6 |  | df-xlim | ⊢ ~~>*  =  ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) | 
						
							| 7 | 6 | breqi | ⊢ ( 𝐹 ~~>* 𝑃  ↔  𝐹 ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) 𝑃 ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ( 𝐹 ~~>* 𝑃  ↔  𝐹 ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) 𝑃 ) ) | 
						
							| 9 |  | letopon | ⊢ ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ ℝ* ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ ℝ* ) ) | 
						
							| 11 | 1 10 | lmbr3 | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) 𝑃  ↔  ( 𝐹  ∈  ( ℝ*  ↑pm  ℂ )  ∧  𝑃  ∈  ℝ*  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) ) | 
						
							| 12 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( ℝ*  ↑pm  ℂ )  ∧  𝑃  ∈  ℝ*  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) )  →  𝑃  ∈  ℝ* ) | 
						
							| 13 | 5 | eqcomi | ⊢ ( ordTop ‘  ≤  )  =  𝐽 | 
						
							| 14 | 13 | raleqi | ⊢ ( ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) )  ↔  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 15 | 3 | rexuz3 | ⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 16 | 15 | bicomd | ⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 )  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 17 | 16 | imbi2d | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) )  ↔  ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) | 
						
							| 18 | 17 | biimpd | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) )  →  ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) | 
						
							| 19 | 18 | ralimdv | ⊢ ( 𝑀  ∈  ℤ  →  ( ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) )  →  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) | 
						
							| 20 | 2 19 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) )  →  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( 𝜑  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  →  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 22 | 14 21 | sylan2b | ⊢ ( ( 𝜑  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  →  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 23 | 22 | 3ad2antr3 | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( ℝ*  ↑pm  ℂ )  ∧  𝑃  ∈  ℝ*  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) )  →  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 24 | 12 23 | jca | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( ℝ*  ↑pm  ℂ )  ∧  𝑃  ∈  ℝ*  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) )  →  ( 𝑃  ∈  ℝ*  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) | 
						
							| 25 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 27 | 10 | elfvexd | ⊢ ( 𝜑  →  ℝ*  ∈  V ) | 
						
							| 28 | 3 | uzsscn2 | ⊢ 𝑍  ⊆  ℂ | 
						
							| 29 | 28 | a1i | ⊢ ( 𝜑  →  𝑍  ⊆  ℂ ) | 
						
							| 30 | 26 27 29 4 | fpmd | ⊢ ( 𝜑  →  𝐹  ∈  ( ℝ*  ↑pm  ℂ ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑃  ∈  ℝ*  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) )  →  𝐹  ∈  ( ℝ*  ↑pm  ℂ ) ) | 
						
							| 32 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑃  ∈  ℝ*  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) )  →  𝑃  ∈  ℝ* ) | 
						
							| 33 | 17 | biimprd | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) )  →  ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) | 
						
							| 34 | 33 | ralimdv | ⊢ ( 𝑀  ∈  ℤ  →  ( ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) )  →  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) | 
						
							| 35 | 2 34 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) )  →  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) | 
						
							| 36 | 35 | imp | ⊢ ( ( 𝜑  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  →  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 37 | 5 | raleqi | ⊢ ( ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) )  ↔  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 38 | 36 37 | sylib | ⊢ ( ( 𝜑  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  →  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 39 | 38 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑃  ∈  ℝ*  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) )  →  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 40 | 31 32 39 | 3jca | ⊢ ( ( 𝜑  ∧  ( 𝑃  ∈  ℝ*  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) )  →  ( 𝐹  ∈  ( ℝ*  ↑pm  ℂ )  ∧  𝑃  ∈  ℝ*  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) | 
						
							| 41 | 24 40 | impbida | ⊢ ( 𝜑  →  ( ( 𝐹  ∈  ( ℝ*  ↑pm  ℂ )  ∧  𝑃  ∈  ℝ*  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  ↔  ( 𝑃  ∈  ℝ*  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) ) | 
						
							| 42 | 8 11 41 | 3bitrd | ⊢ ( 𝜑  →  ( 𝐹 ~~>* 𝑃  ↔  ( 𝑃  ∈  ℝ*  ∧  ∀ 𝑢  ∈  𝐽 ( 𝑃  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) ) |