| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rexuz3.1 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 2 | 
							
								
							 | 
							ralel | 
							⊢ ∀ 𝑘  ∈  𝑍 𝑘  ∈  𝑍  | 
						
						
							| 3 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  𝑀  →  ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 4 | 
							
								3 1
							 | 
							eqtr4di | 
							⊢ ( 𝑗  =  𝑀  →  ( ℤ≥ ‘ 𝑗 )  =  𝑍 )  | 
						
						
							| 5 | 
							
								4
							 | 
							raleqdv | 
							⊢ ( 𝑗  =  𝑀  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑘  ∈  𝑍  ↔  ∀ 𝑘  ∈  𝑍 𝑘  ∈  𝑍 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							rspcev | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  ∀ 𝑘  ∈  𝑍 𝑘  ∈  𝑍 )  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑘  ∈  𝑍 )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							mpan2 | 
							⊢ ( 𝑀  ∈  ℤ  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑘  ∈  𝑍 )  | 
						
						
							| 8 | 
							
								7
							 | 
							biantrurd | 
							⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  ↔  ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑘  ∈  𝑍  ∧  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) )  | 
						
						
							| 9 | 
							
								1
							 | 
							uztrn2 | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 10 | 
							
								9
							 | 
							a1d | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝜑  →  𝑘  ∈  𝑍 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ancrd | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝜑  →  ( 𝑘  ∈  𝑍  ∧  𝜑 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ralimdva | 
							⊢ ( 𝑗  ∈  𝑍  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  𝑍  ∧  𝜑 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eluzelz | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑗  ∈  ℤ )  | 
						
						
							| 14 | 
							
								13 1
							 | 
							eleq2s | 
							⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℤ )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							jctild | 
							⊢ ( 𝑗  ∈  𝑍  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  →  ( 𝑗  ∈  ℤ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  𝑍  ∧  𝜑 ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							imp | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 )  →  ( 𝑗  ∈  ℤ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  𝑍  ∧  𝜑 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							uzid | 
							⊢ ( 𝑗  ∈  ℤ  →  𝑗  ∈  ( ℤ≥ ‘ 𝑗 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑘  ∈  𝑍  ∧  𝜑 )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 19 | 
							
								18
							 | 
							ralimi | 
							⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  𝑍  ∧  𝜑 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑘  ∈  𝑍 )  | 
						
						
							| 20 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  𝑍  ↔  𝑗  ∈  𝑍 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							rspcva | 
							⊢ ( ( 𝑗  ∈  ( ℤ≥ ‘ 𝑗 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑘  ∈  𝑍 )  →  𝑗  ∈  𝑍 )  | 
						
						
							| 22 | 
							
								17 19 21
							 | 
							syl2an | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  𝑍  ∧  𝜑 ) )  →  𝑗  ∈  𝑍 )  | 
						
						
							| 23 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑘  ∈  𝑍  ∧  𝜑 )  →  𝜑 )  | 
						
						
							| 24 | 
							
								23
							 | 
							ralimi | 
							⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  𝑍  ∧  𝜑 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantl | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  𝑍  ∧  𝜑 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 )  | 
						
						
							| 26 | 
							
								22 25
							 | 
							jca | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  𝑍  ∧  𝜑 ) )  →  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 ) )  | 
						
						
							| 27 | 
							
								16 26
							 | 
							impbii | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 )  ↔  ( 𝑗  ∈  ℤ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  𝑍  ∧  𝜑 ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							rexbii2 | 
							⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  𝑍  ∧  𝜑 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							rexanuz | 
							⊢ ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  𝑍  ∧  𝜑 )  ↔  ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑘  ∈  𝑍  ∧  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							bitr2i | 
							⊢ ( ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑘  ∈  𝑍  ∧  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 )  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 )  | 
						
						
							| 31 | 
							
								8 30
							 | 
							bitr2di | 
							⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 ) )  |