Metamath Proof Explorer


Theorem fuzxrpmcn

Description: A function mapping from an upper set of integers to the extended reals is a partial map on the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses fuzxrpmcn.1 𝑍 = ( ℤ𝑀 )
fuzxrpmcn.2 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
Assertion fuzxrpmcn ( 𝜑𝐹 ∈ ( ℝ*pm ℂ ) )

Proof

Step Hyp Ref Expression
1 fuzxrpmcn.1 𝑍 = ( ℤ𝑀 )
2 fuzxrpmcn.2 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
3 cnex ℂ ∈ V
4 3 a1i ( 𝜑 → ℂ ∈ V )
5 xrex * ∈ V
6 5 a1i ( 𝜑 → ℝ* ∈ V )
7 1 uzsscn2 𝑍 ⊆ ℂ
8 7 a1i ( 𝜑𝑍 ⊆ ℂ )
9 4 6 8 2 fpmd ( 𝜑𝐹 ∈ ( ℝ*pm ℂ ) )