Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
Limits for sequences of extended real numbers
fuzxrpmcn
Metamath Proof Explorer
Description: A function mapping from an upper set of integers to the extended reals
is a partial map on the complex numbers. (Contributed by Glauco
Siliprandi , 5-Feb-2022)
Ref
Expression
Hypotheses
fuzxrpmcn.1
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 )
fuzxrpmcn.2
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* )
Assertion
fuzxrpmcn
⊢ ( 𝜑 → 𝐹 ∈ ( ℝ* ↑pm ℂ ) )
Proof
Step
Hyp
Ref
Expression
1
fuzxrpmcn.1
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 )
2
fuzxrpmcn.2
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* )
3
cnex
⊢ ℂ ∈ V
4
3
a1i
⊢ ( 𝜑 → ℂ ∈ V )
5
xrex
⊢ ℝ* ∈ V
6
5
a1i
⊢ ( 𝜑 → ℝ* ∈ V )
7
1
uzsscn2
⊢ 𝑍 ⊆ ℂ
8
7
a1i
⊢ ( 𝜑 → 𝑍 ⊆ ℂ )
9
4 6 8 2
fpmd
⊢ ( 𝜑 → 𝐹 ∈ ( ℝ* ↑pm ℂ ) )