Metamath Proof Explorer


Theorem fuzxrpmcn

Description: A function mapping from an upper set of integers to the extended reals is a partial map on the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses fuzxrpmcn.1
|- Z = ( ZZ>= ` M )
fuzxrpmcn.2
|- ( ph -> F : Z --> RR* )
Assertion fuzxrpmcn
|- ( ph -> F e. ( RR* ^pm CC ) )

Proof

Step Hyp Ref Expression
1 fuzxrpmcn.1
 |-  Z = ( ZZ>= ` M )
2 fuzxrpmcn.2
 |-  ( ph -> F : Z --> RR* )
3 cnex
 |-  CC e. _V
4 3 a1i
 |-  ( ph -> CC e. _V )
5 xrex
 |-  RR* e. _V
6 5 a1i
 |-  ( ph -> RR* e. _V )
7 1 uzsscn2
 |-  Z C_ CC
8 7 a1i
 |-  ( ph -> Z C_ CC )
9 4 6 8 2 fpmd
 |-  ( ph -> F e. ( RR* ^pm CC ) )