Metamath Proof Explorer


Theorem fuzxrpmcn

Description: A function mapping from an upper set of integers to the extended reals is a partial map on the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses fuzxrpmcn.1 Z = M
fuzxrpmcn.2 φ F : Z *
Assertion fuzxrpmcn φ F * 𝑝𝑚

Proof

Step Hyp Ref Expression
1 fuzxrpmcn.1 Z = M
2 fuzxrpmcn.2 φ F : Z *
3 cnex V
4 3 a1i φ V
5 xrex * V
6 5 a1i φ * V
7 1 uzsscn2 Z
8 7 a1i φ Z
9 4 6 8 2 fpmd φ F * 𝑝𝑚