| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnrefiisplem.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | cnrefiisplem.n | ⊢ ( 𝜑  →  ¬  𝐴  ∈  ℝ ) | 
						
							| 3 |  | cnrefiisplem.b | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 4 |  | cnrefiisplem.c | ⊢ 𝐶  =  ( ℝ  ∪  𝐵 ) | 
						
							| 5 |  | cnrefiisplem.d | ⊢ 𝐷  =  ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) } ) | 
						
							| 6 |  | cnrefiisplem.x | ⊢ 𝑋  =  inf ( 𝐷 ,  ℝ* ,   <  ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  =  ( abs ‘ ( ℑ ‘ 𝐴 ) ) )  →  𝑤  =  ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 8 | 1 2 | absimnre | ⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  =  ( abs ‘ ( ℑ ‘ 𝐴 ) ) )  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 10 | 7 9 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑤  =  ( abs ‘ ( ℑ ‘ 𝐴 ) ) )  →  𝑤  ∈  ℝ+ ) | 
						
							| 11 | 10 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐷 )  ∧  𝑤  =  ( abs ‘ ( ℑ ‘ 𝐴 ) ) )  →  𝑤  ∈  ℝ+ ) | 
						
							| 12 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐷 )  ∧  𝑤  ≠  ( abs ‘ ( ℑ ‘ 𝐴 ) ) )  →  𝜑 ) | 
						
							| 13 | 5 | eleq2i | ⊢ ( 𝑤  ∈  𝐷  ↔  𝑤  ∈  ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) } ) ) | 
						
							| 14 | 13 | biimpi | ⊢ ( 𝑤  ∈  𝐷  →  𝑤  ∈  ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) } ) ) | 
						
							| 15 |  | nelsn | ⊢ ( 𝑤  ≠  ( abs ‘ ( ℑ ‘ 𝐴 ) )  →  ¬  𝑤  ∈  { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ) | 
						
							| 16 |  | elunnel1 | ⊢ ( ( 𝑤  ∈  ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) } )  ∧  ¬  𝑤  ∈  { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } )  →  𝑤  ∈  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) } ) | 
						
							| 17 | 14 15 16 | syl2an | ⊢ ( ( 𝑤  ∈  𝐷  ∧  𝑤  ≠  ( abs ‘ ( ℑ ‘ 𝐴 ) ) )  →  𝑤  ∈  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) } ) | 
						
							| 18 |  | eliun | ⊢ ( 𝑤  ∈  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) }  ↔  ∃ 𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) 𝑤  ∈  { ( abs ‘ ( 𝑦  −  𝐴 ) ) } ) | 
						
							| 19 | 17 18 | sylib | ⊢ ( ( 𝑤  ∈  𝐷  ∧  𝑤  ≠  ( abs ‘ ( ℑ ‘ 𝐴 ) ) )  →  ∃ 𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) 𝑤  ∈  { ( abs ‘ ( 𝑦  −  𝐴 ) ) } ) | 
						
							| 20 |  | velsn | ⊢ ( 𝑤  ∈  { ( abs ‘ ( 𝑦  −  𝐴 ) ) }  ↔  𝑤  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 21 | 20 | rexbii | ⊢ ( ∃ 𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) 𝑤  ∈  { ( abs ‘ ( 𝑦  −  𝐴 ) ) }  ↔  ∃ 𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) 𝑤  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 22 | 19 21 | sylib | ⊢ ( ( 𝑤  ∈  𝐷  ∧  𝑤  ≠  ( abs ‘ ( ℑ ‘ 𝐴 ) ) )  →  ∃ 𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) 𝑤  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 23 | 22 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐷 )  ∧  𝑤  ≠  ( abs ‘ ( ℑ ‘ 𝐴 ) ) )  →  ∃ 𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) 𝑤  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) )  ∧  𝑤  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) )  →  𝑤  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 25 |  | eldifi | ⊢ ( 𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } )  →  𝑦  ∈  ( 𝐵  ∩  ℂ ) ) | 
						
							| 26 | 25 | elin2d | ⊢ ( 𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } )  →  𝑦  ∈  ℂ ) | 
						
							| 27 | 26 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) )  ∧  𝑤  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) )  →  𝑦  ∈  ℂ ) | 
						
							| 28 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) )  ∧  𝑤  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 29 | 27 28 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) )  ∧  𝑤  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) )  →  ( 𝑦  −  𝐴 )  ∈  ℂ ) | 
						
							| 30 |  | eldifsni | ⊢ ( 𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } )  →  𝑦  ≠  𝐴 ) | 
						
							| 31 | 30 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) )  ∧  𝑤  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) )  →  𝑦  ≠  𝐴 ) | 
						
							| 32 | 27 28 31 | subne0d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) )  ∧  𝑤  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) )  →  ( 𝑦  −  𝐴 )  ≠  0 ) | 
						
							| 33 | 29 32 | absrpcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) )  ∧  𝑤  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) )  →  ( abs ‘ ( 𝑦  −  𝐴 ) )  ∈  ℝ+ ) | 
						
							| 34 | 24 33 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) )  ∧  𝑤  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) )  →  𝑤  ∈  ℝ+ ) | 
						
							| 35 | 34 | rexlimdva2 | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) 𝑤  =  ( abs ‘ ( 𝑦  −  𝐴 ) )  →  𝑤  ∈  ℝ+ ) ) | 
						
							| 36 | 12 23 35 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐷 )  ∧  𝑤  ≠  ( abs ‘ ( ℑ ‘ 𝐴 ) ) )  →  𝑤  ∈  ℝ+ ) | 
						
							| 37 | 11 36 | pm2.61dane | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐷 )  →  𝑤  ∈  ℝ+ ) | 
						
							| 38 | 37 | ssd | ⊢ ( 𝜑  →  𝐷  ⊆  ℝ+ ) | 
						
							| 39 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 40 | 39 | a1i | ⊢ ( 𝜑  →   <   Or  ℝ* ) | 
						
							| 41 |  | snfi | ⊢ { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∈  Fin | 
						
							| 42 | 41 | a1i | ⊢ ( 𝜑  →  { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∈  Fin ) | 
						
							| 43 |  | inss1 | ⊢ ( 𝐵  ∩  ℂ )  ⊆  𝐵 | 
						
							| 44 | 43 | a1i | ⊢ ( 𝜑  →  ( 𝐵  ∩  ℂ )  ⊆  𝐵 ) | 
						
							| 45 | 44 | ssdifssd | ⊢ ( 𝜑  →  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } )  ⊆  𝐵 ) | 
						
							| 46 | 3 45 | ssfid | ⊢ ( 𝜑  →  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } )  ∈  Fin ) | 
						
							| 47 |  | snfi | ⊢ { ( abs ‘ ( 𝑦  −  𝐴 ) ) }  ∈  Fin | 
						
							| 48 | 47 | rgenw | ⊢ ∀ 𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) }  ∈  Fin | 
						
							| 49 |  | iunfi | ⊢ ( ( ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } )  ∈  Fin  ∧  ∀ 𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) }  ∈  Fin )  →  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) }  ∈  Fin ) | 
						
							| 50 | 46 48 49 | sylancl | ⊢ ( 𝜑  →  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) }  ∈  Fin ) | 
						
							| 51 | 42 50 | unfid | ⊢ ( 𝜑  →  ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) } )  ∈  Fin ) | 
						
							| 52 | 5 51 | eqeltrid | ⊢ ( 𝜑  →  𝐷  ∈  Fin ) | 
						
							| 53 |  | fvex | ⊢ ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  V | 
						
							| 54 | 53 | snid | ⊢ ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } | 
						
							| 55 |  | elun1 | ⊢ ( ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) } ) ) | 
						
							| 56 | 54 55 | ax-mp | ⊢ ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) } ) | 
						
							| 57 | 56 5 | eleqtrri | ⊢ ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  𝐷 | 
						
							| 58 | 57 | a1i | ⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  𝐷 ) | 
						
							| 59 | 58 | ne0d | ⊢ ( 𝜑  →  𝐷  ≠  ∅ ) | 
						
							| 60 |  | rpssxr | ⊢ ℝ+  ⊆  ℝ* | 
						
							| 61 | 38 60 | sstrdi | ⊢ ( 𝜑  →  𝐷  ⊆  ℝ* ) | 
						
							| 62 |  | fiinfcl | ⊢ ( (  <   Or  ℝ*  ∧  ( 𝐷  ∈  Fin  ∧  𝐷  ≠  ∅  ∧  𝐷  ⊆  ℝ* ) )  →  inf ( 𝐷 ,  ℝ* ,   <  )  ∈  𝐷 ) | 
						
							| 63 | 40 52 59 61 62 | syl13anc | ⊢ ( 𝜑  →  inf ( 𝐷 ,  ℝ* ,   <  )  ∈  𝐷 ) | 
						
							| 64 | 6 63 | eqeltrid | ⊢ ( 𝜑  →  𝑋  ∈  𝐷 ) | 
						
							| 65 | 38 64 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  ℝ+ ) | 
						
							| 66 | 38 63 | sseldd | ⊢ ( 𝜑  →  inf ( 𝐷 ,  ℝ* ,   <  )  ∈  ℝ+ ) | 
						
							| 67 | 66 | rpred | ⊢ ( 𝜑  →  inf ( 𝐷 ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  inf ( 𝐷 ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 69 | 1 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 70 | 69 | recnd | ⊢ ( 𝜑  →  ( ℑ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( ℑ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 72 | 71 | abscld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 73 |  | recn | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℂ ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℂ ) | 
						
							| 75 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝐴  ∈  ℂ ) | 
						
							| 76 | 74 75 | subcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑦  −  𝐴 )  ∈  ℂ ) | 
						
							| 77 | 76 | abscld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( abs ‘ ( 𝑦  −  𝐴 ) )  ∈  ℝ ) | 
						
							| 78 | 61 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝐷  ⊆  ℝ* ) | 
						
							| 79 |  | infxrlb | ⊢ ( ( 𝐷  ⊆  ℝ*  ∧  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  𝐷 )  →  inf ( 𝐷 ,  ℝ* ,   <  )  ≤  ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 80 | 78 57 79 | sylancl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  inf ( 𝐷 ,  ℝ* ,   <  )  ≤  ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 81 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℝ ) | 
						
							| 82 | 75 81 | absimlere | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 83 | 68 72 77 80 82 | letrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  inf ( 𝐷 ,  ℝ* ,   <  )  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 84 | 6 83 | eqbrtrid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝑋  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 85 | 84 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐶 )  ∧  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 ) )  ∧  𝑦  ∈  ℝ )  →  𝑋  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 86 | 4 | eleq2i | ⊢ ( 𝑦  ∈  𝐶  ↔  𝑦  ∈  ( ℝ  ∪  𝐵 ) ) | 
						
							| 87 |  | elunnel1 | ⊢ ( ( 𝑦  ∈  ( ℝ  ∪  𝐵 )  ∧  ¬  𝑦  ∈  ℝ )  →  𝑦  ∈  𝐵 ) | 
						
							| 88 | 86 87 | sylanb | ⊢ ( ( 𝑦  ∈  𝐶  ∧  ¬  𝑦  ∈  ℝ )  →  𝑦  ∈  𝐵 ) | 
						
							| 89 | 88 | ad4ant24 | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐶 )  ∧  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 ) )  ∧  ¬  𝑦  ∈  ℝ )  →  𝑦  ∈  𝐵 ) | 
						
							| 90 | 61 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 ) )  ∧  𝑦  ∈  𝐵 )  →  𝐷  ⊆  ℝ* ) | 
						
							| 91 |  | simpr | ⊢ ( ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 92 |  | simpll | ⊢ ( ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  ℂ ) | 
						
							| 93 | 91 92 | elind | ⊢ ( ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  ( 𝐵  ∩  ℂ ) ) | 
						
							| 94 |  | nelsn | ⊢ ( 𝑦  ≠  𝐴  →  ¬  𝑦  ∈  { 𝐴 } ) | 
						
							| 95 | 94 | ad2antlr | ⊢ ( ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ¬  𝑦  ∈  { 𝐴 } ) | 
						
							| 96 | 93 95 | eldifd | ⊢ ( ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) ) | 
						
							| 97 |  | fvex | ⊢ ( abs ‘ ( 𝑦  −  𝐴 ) )  ∈  V | 
						
							| 98 | 97 | snid | ⊢ ( abs ‘ ( 𝑦  −  𝐴 ) )  ∈  { ( abs ‘ ( 𝑦  −  𝐴 ) ) } | 
						
							| 99 |  | fvoveq1 | ⊢ ( 𝑤  =  𝑦  →  ( abs ‘ ( 𝑤  −  𝐴 ) )  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 100 | 99 | sneqd | ⊢ ( 𝑤  =  𝑦  →  { ( abs ‘ ( 𝑤  −  𝐴 ) ) }  =  { ( abs ‘ ( 𝑦  −  𝐴 ) ) } ) | 
						
							| 101 | 100 | eliuni | ⊢ ( ( 𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } )  ∧  ( abs ‘ ( 𝑦  −  𝐴 ) )  ∈  { ( abs ‘ ( 𝑦  −  𝐴 ) ) } )  →  ( abs ‘ ( 𝑦  −  𝐴 ) )  ∈  ∪  𝑤  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑤  −  𝐴 ) ) } ) | 
						
							| 102 | 96 98 101 | sylancl | ⊢ ( ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ( abs ‘ ( 𝑦  −  𝐴 ) )  ∈  ∪  𝑤  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑤  −  𝐴 ) ) } ) | 
						
							| 103 | 100 | cbviunv | ⊢ ∪  𝑤  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑤  −  𝐴 ) ) }  =  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) } | 
						
							| 104 | 102 103 | eleqtrdi | ⊢ ( ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ( abs ‘ ( 𝑦  −  𝐴 ) )  ∈  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) } ) | 
						
							| 105 |  | elun2 | ⊢ ( ( abs ‘ ( 𝑦  −  𝐴 ) )  ∈  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) }  →  ( abs ‘ ( 𝑦  −  𝐴 ) )  ∈  ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) } ) ) | 
						
							| 106 | 104 105 | syl | ⊢ ( ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ( abs ‘ ( 𝑦  −  𝐴 ) )  ∈  ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑦  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑦  −  𝐴 ) ) } ) ) | 
						
							| 107 | 106 5 | eleqtrrdi | ⊢ ( ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ( abs ‘ ( 𝑦  −  𝐴 ) )  ∈  𝐷 ) | 
						
							| 108 | 107 | adantll | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 ) )  ∧  𝑦  ∈  𝐵 )  →  ( abs ‘ ( 𝑦  −  𝐴 ) )  ∈  𝐷 ) | 
						
							| 109 |  | infxrlb | ⊢ ( ( 𝐷  ⊆  ℝ*  ∧  ( abs ‘ ( 𝑦  −  𝐴 ) )  ∈  𝐷 )  →  inf ( 𝐷 ,  ℝ* ,   <  )  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 110 | 90 108 109 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 ) )  ∧  𝑦  ∈  𝐵 )  →  inf ( 𝐷 ,  ℝ* ,   <  )  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 111 | 6 110 | eqbrtrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 ) )  ∧  𝑦  ∈  𝐵 )  →  𝑋  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 112 | 111 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐶 )  ∧  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 ) )  ∧  𝑦  ∈  𝐵 )  →  𝑋  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 113 | 89 112 | syldan | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐶 )  ∧  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 ) )  ∧  ¬  𝑦  ∈  ℝ )  →  𝑋  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 114 | 85 113 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐶 )  ∧  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 ) )  →  𝑋  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 115 | 114 | ex | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐶 )  →  ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑋  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) ) | 
						
							| 116 | 115 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐶 ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑋  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) ) | 
						
							| 117 |  | breq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) )  ↔  𝑋  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) ) | 
						
							| 118 | 117 | imbi2d | ⊢ ( 𝑥  =  𝑋  →  ( ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) )  ↔  ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑋  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) ) ) | 
						
							| 119 | 118 | ralbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∀ 𝑦  ∈  𝐶 ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) )  ↔  ∀ 𝑦  ∈  𝐶 ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑋  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) ) ) | 
						
							| 120 | 119 | rspcev | ⊢ ( ( 𝑋  ∈  ℝ+  ∧  ∀ 𝑦  ∈  𝐶 ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑋  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) )  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑦  ∈  𝐶 ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) ) | 
						
							| 121 | 65 116 120 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑦  ∈  𝐶 ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) ) |