| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnrefiisplem.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
cnrefiisplem.n |
⊢ ( 𝜑 → ¬ 𝐴 ∈ ℝ ) |
| 3 |
|
cnrefiisplem.b |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 4 |
|
cnrefiisplem.c |
⊢ 𝐶 = ( ℝ ∪ 𝐵 ) |
| 5 |
|
cnrefiisplem.d |
⊢ 𝐷 = ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) |
| 6 |
|
cnrefiisplem.x |
⊢ 𝑋 = inf ( 𝐷 , ℝ* , < ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) → 𝑤 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 8 |
1 2
|
absimnre |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 10 |
7 9
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑤 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) → 𝑤 ∈ ℝ+ ) |
| 11 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑤 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) → 𝑤 ∈ ℝ+ ) |
| 12 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑤 ≠ ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) → 𝜑 ) |
| 13 |
5
|
eleq2i |
⊢ ( 𝑤 ∈ 𝐷 ↔ 𝑤 ∈ ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) ) |
| 14 |
13
|
biimpi |
⊢ ( 𝑤 ∈ 𝐷 → 𝑤 ∈ ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) ) |
| 15 |
|
nelsn |
⊢ ( 𝑤 ≠ ( abs ‘ ( ℑ ‘ 𝐴 ) ) → ¬ 𝑤 ∈ { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ) |
| 16 |
|
elunnel1 |
⊢ ( ( 𝑤 ∈ ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) ∧ ¬ 𝑤 ∈ { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ) → 𝑤 ∈ ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) |
| 17 |
14 15 16
|
syl2an |
⊢ ( ( 𝑤 ∈ 𝐷 ∧ 𝑤 ≠ ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) → 𝑤 ∈ ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) |
| 18 |
|
eliun |
⊢ ( 𝑤 ∈ ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ↔ ∃ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) 𝑤 ∈ { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) |
| 19 |
17 18
|
sylib |
⊢ ( ( 𝑤 ∈ 𝐷 ∧ 𝑤 ≠ ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) → ∃ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) 𝑤 ∈ { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) |
| 20 |
|
velsn |
⊢ ( 𝑤 ∈ { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ↔ 𝑤 = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 21 |
20
|
rexbii |
⊢ ( ∃ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) 𝑤 ∈ { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ↔ ∃ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) 𝑤 = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 22 |
19 21
|
sylib |
⊢ ( ( 𝑤 ∈ 𝐷 ∧ 𝑤 ≠ ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) → ∃ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) 𝑤 = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 23 |
22
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑤 ≠ ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) → ∃ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) 𝑤 = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 24 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) ) ∧ 𝑤 = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) → 𝑤 = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 25 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) → 𝑦 ∈ ( 𝐵 ∩ ℂ ) ) |
| 26 |
25
|
elin2d |
⊢ ( 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) → 𝑦 ∈ ℂ ) |
| 27 |
26
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) ) ∧ 𝑤 = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) → 𝑦 ∈ ℂ ) |
| 28 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) ) ∧ 𝑤 = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) → 𝐴 ∈ ℂ ) |
| 29 |
27 28
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) ) ∧ 𝑤 = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) → ( 𝑦 − 𝐴 ) ∈ ℂ ) |
| 30 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) → 𝑦 ≠ 𝐴 ) |
| 31 |
30
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) ) ∧ 𝑤 = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) → 𝑦 ≠ 𝐴 ) |
| 32 |
27 28 31
|
subne0d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) ) ∧ 𝑤 = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) → ( 𝑦 − 𝐴 ) ≠ 0 ) |
| 33 |
29 32
|
absrpcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) ) ∧ 𝑤 = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) → ( abs ‘ ( 𝑦 − 𝐴 ) ) ∈ ℝ+ ) |
| 34 |
24 33
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) ) ∧ 𝑤 = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) → 𝑤 ∈ ℝ+ ) |
| 35 |
34
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) 𝑤 = ( abs ‘ ( 𝑦 − 𝐴 ) ) → 𝑤 ∈ ℝ+ ) ) |
| 36 |
12 23 35
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑤 ≠ ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) → 𝑤 ∈ ℝ+ ) |
| 37 |
11 36
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) → 𝑤 ∈ ℝ+ ) |
| 38 |
37
|
ssd |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ+ ) |
| 39 |
|
xrltso |
⊢ < Or ℝ* |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → < Or ℝ* ) |
| 41 |
|
snfi |
⊢ { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∈ Fin |
| 42 |
41
|
a1i |
⊢ ( 𝜑 → { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∈ Fin ) |
| 43 |
|
inss1 |
⊢ ( 𝐵 ∩ ℂ ) ⊆ 𝐵 |
| 44 |
43
|
a1i |
⊢ ( 𝜑 → ( 𝐵 ∩ ℂ ) ⊆ 𝐵 ) |
| 45 |
44
|
ssdifssd |
⊢ ( 𝜑 → ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) ⊆ 𝐵 ) |
| 46 |
3 45
|
ssfid |
⊢ ( 𝜑 → ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) ∈ Fin ) |
| 47 |
|
snfi |
⊢ { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ∈ Fin |
| 48 |
47
|
rgenw |
⊢ ∀ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ∈ Fin |
| 49 |
|
iunfi |
⊢ ( ( ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) ∈ Fin ∧ ∀ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ∈ Fin ) → ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ∈ Fin ) |
| 50 |
46 48 49
|
sylancl |
⊢ ( 𝜑 → ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ∈ Fin ) |
| 51 |
42 50
|
unfid |
⊢ ( 𝜑 → ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) ∈ Fin ) |
| 52 |
5 51
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ Fin ) |
| 53 |
|
fvex |
⊢ ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ V |
| 54 |
53
|
snid |
⊢ ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } |
| 55 |
|
elun1 |
⊢ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) ) |
| 56 |
54 55
|
ax-mp |
⊢ ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) |
| 57 |
56 5
|
eleqtrri |
⊢ ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ 𝐷 |
| 58 |
57
|
a1i |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ 𝐷 ) |
| 59 |
58
|
ne0d |
⊢ ( 𝜑 → 𝐷 ≠ ∅ ) |
| 60 |
|
rpssxr |
⊢ ℝ+ ⊆ ℝ* |
| 61 |
38 60
|
sstrdi |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ* ) |
| 62 |
|
fiinfcl |
⊢ ( ( < Or ℝ* ∧ ( 𝐷 ∈ Fin ∧ 𝐷 ≠ ∅ ∧ 𝐷 ⊆ ℝ* ) ) → inf ( 𝐷 , ℝ* , < ) ∈ 𝐷 ) |
| 63 |
40 52 59 61 62
|
syl13anc |
⊢ ( 𝜑 → inf ( 𝐷 , ℝ* , < ) ∈ 𝐷 ) |
| 64 |
6 63
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 65 |
38 64
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
| 66 |
38 63
|
sseldd |
⊢ ( 𝜑 → inf ( 𝐷 , ℝ* , < ) ∈ ℝ+ ) |
| 67 |
66
|
rpred |
⊢ ( 𝜑 → inf ( 𝐷 , ℝ* , < ) ∈ ℝ ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → inf ( 𝐷 , ℝ* , < ) ∈ ℝ ) |
| 69 |
1
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 70 |
69
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 72 |
71
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 73 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
| 74 |
73
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 75 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 76 |
74 75
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 − 𝐴 ) ∈ ℂ ) |
| 77 |
76
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( 𝑦 − 𝐴 ) ) ∈ ℝ ) |
| 78 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐷 ⊆ ℝ* ) |
| 79 |
|
infxrlb |
⊢ ( ( 𝐷 ⊆ ℝ* ∧ ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ 𝐷 ) → inf ( 𝐷 , ℝ* , < ) ≤ ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 80 |
78 57 79
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → inf ( 𝐷 , ℝ* , < ) ≤ ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
| 81 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 82 |
75 81
|
absimlere |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 83 |
68 72 77 80 82
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → inf ( 𝐷 , ℝ* , < ) ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 84 |
6 83
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑋 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 85 |
84
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ) ∧ 𝑦 ∈ ℝ ) → 𝑋 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 86 |
4
|
eleq2i |
⊢ ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ( ℝ ∪ 𝐵 ) ) |
| 87 |
|
elunnel1 |
⊢ ( ( 𝑦 ∈ ( ℝ ∪ 𝐵 ) ∧ ¬ 𝑦 ∈ ℝ ) → 𝑦 ∈ 𝐵 ) |
| 88 |
86 87
|
sylanb |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ¬ 𝑦 ∈ ℝ ) → 𝑦 ∈ 𝐵 ) |
| 89 |
88
|
ad4ant24 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ) ∧ ¬ 𝑦 ∈ ℝ ) → 𝑦 ∈ 𝐵 ) |
| 90 |
61
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ⊆ ℝ* ) |
| 91 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 92 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) |
| 93 |
91 92
|
elind |
⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ( 𝐵 ∩ ℂ ) ) |
| 94 |
|
nelsn |
⊢ ( 𝑦 ≠ 𝐴 → ¬ 𝑦 ∈ { 𝐴 } ) |
| 95 |
94
|
ad2antlr |
⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝑦 ∈ { 𝐴 } ) |
| 96 |
93 95
|
eldifd |
⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) ) |
| 97 |
|
fvex |
⊢ ( abs ‘ ( 𝑦 − 𝐴 ) ) ∈ V |
| 98 |
97
|
snid |
⊢ ( abs ‘ ( 𝑦 − 𝐴 ) ) ∈ { ( abs ‘ ( 𝑦 − 𝐴 ) ) } |
| 99 |
|
fvoveq1 |
⊢ ( 𝑤 = 𝑦 → ( abs ‘ ( 𝑤 − 𝐴 ) ) = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 100 |
99
|
sneqd |
⊢ ( 𝑤 = 𝑦 → { ( abs ‘ ( 𝑤 − 𝐴 ) ) } = { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) |
| 101 |
100
|
eliuni |
⊢ ( ( 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) ∈ { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) → ( abs ‘ ( 𝑦 − 𝐴 ) ) ∈ ∪ 𝑤 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑤 − 𝐴 ) ) } ) |
| 102 |
96 98 101
|
sylancl |
⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( abs ‘ ( 𝑦 − 𝐴 ) ) ∈ ∪ 𝑤 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑤 − 𝐴 ) ) } ) |
| 103 |
100
|
cbviunv |
⊢ ∪ 𝑤 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑤 − 𝐴 ) ) } = ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } |
| 104 |
102 103
|
eleqtrdi |
⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( abs ‘ ( 𝑦 − 𝐴 ) ) ∈ ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) |
| 105 |
|
elun2 |
⊢ ( ( abs ‘ ( 𝑦 − 𝐴 ) ) ∈ ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } → ( abs ‘ ( 𝑦 − 𝐴 ) ) ∈ ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) ) |
| 106 |
104 105
|
syl |
⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( abs ‘ ( 𝑦 − 𝐴 ) ) ∈ ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑦 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑦 − 𝐴 ) ) } ) ) |
| 107 |
106 5
|
eleqtrrdi |
⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( abs ‘ ( 𝑦 − 𝐴 ) ) ∈ 𝐷 ) |
| 108 |
107
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( abs ‘ ( 𝑦 − 𝐴 ) ) ∈ 𝐷 ) |
| 109 |
|
infxrlb |
⊢ ( ( 𝐷 ⊆ ℝ* ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) ∈ 𝐷 ) → inf ( 𝐷 , ℝ* , < ) ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 110 |
90 108 109
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → inf ( 𝐷 , ℝ* , < ) ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 111 |
6 110
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑋 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 112 |
111
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑋 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 113 |
89 112
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ) ∧ ¬ 𝑦 ∈ ℝ ) → 𝑋 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 114 |
85 113
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ) → 𝑋 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
| 115 |
114
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑋 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) |
| 116 |
115
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐶 ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑋 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) |
| 117 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ↔ 𝑋 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) |
| 118 |
117
|
imbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ↔ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑋 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) ) |
| 119 |
118
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ 𝐶 ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ↔ ∀ 𝑦 ∈ 𝐶 ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑋 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) ) |
| 120 |
119
|
rspcev |
⊢ ( ( 𝑋 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐶 ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑋 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝐶 ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) |
| 121 |
65 116 120
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝐶 ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) |