| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnrefiisp.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | cnrefiisp.n | ⊢ ( 𝜑  →  ¬  𝐴  ∈  ℝ ) | 
						
							| 3 |  | cnrefiisp.b | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 4 |  | cnrefiisp.c | ⊢ 𝐶  =  ( ℝ  ∪  𝐵 ) | 
						
							| 5 |  | eqid | ⊢ ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑤  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑤  −  𝐴 ) ) } )  =  ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑤  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑤  −  𝐴 ) ) } ) | 
						
							| 6 |  | fvoveq1 | ⊢ ( 𝑧  =  𝑤  →  ( abs ‘ ( 𝑧  −  𝐴 ) )  =  ( abs ‘ ( 𝑤  −  𝐴 ) ) ) | 
						
							| 7 | 6 | sneqd | ⊢ ( 𝑧  =  𝑤  →  { ( abs ‘ ( 𝑧  −  𝐴 ) ) }  =  { ( abs ‘ ( 𝑤  −  𝐴 ) ) } ) | 
						
							| 8 | 7 | cbviunv | ⊢ ∪  𝑧  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑧  −  𝐴 ) ) }  =  ∪  𝑤  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑤  −  𝐴 ) ) } | 
						
							| 9 | 8 | uneq2i | ⊢ ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑧  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑧  −  𝐴 ) ) } )  =  ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑤  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑤  −  𝐴 ) ) } ) | 
						
							| 10 | 9 | infeq1i | ⊢ inf ( ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑧  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑧  −  𝐴 ) ) } ) ,  ℝ* ,   <  )  =  inf ( ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) }  ∪  ∪  𝑤  ∈  ( ( 𝐵  ∩  ℂ )  ∖  { 𝐴 } ) { ( abs ‘ ( 𝑤  −  𝐴 ) ) } ) ,  ℝ* ,   <  ) | 
						
							| 11 | 1 2 3 4 5 10 | cnrefiisplem | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑤  ∈  𝐶 ( ( 𝑤  ∈  ℂ  ∧  𝑤  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑤  −  𝐴 ) ) ) ) | 
						
							| 12 |  | eleq1w | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ∈  ℂ  ↔  𝑦  ∈  ℂ ) ) | 
						
							| 13 |  | neeq1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ≠  𝐴  ↔  𝑦  ≠  𝐴 ) ) | 
						
							| 14 | 12 13 | anbi12d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑤  ∈  ℂ  ∧  𝑤  ≠  𝐴 )  ↔  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 ) ) ) | 
						
							| 15 |  | fvoveq1 | ⊢ ( 𝑤  =  𝑦  →  ( abs ‘ ( 𝑤  −  𝐴 ) )  =  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) | 
						
							| 16 | 15 | breq2d | ⊢ ( 𝑤  =  𝑦  →  ( 𝑥  ≤  ( abs ‘ ( 𝑤  −  𝐴 ) )  ↔  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) ) | 
						
							| 17 | 14 16 | imbi12d | ⊢ ( 𝑤  =  𝑦  →  ( ( ( 𝑤  ∈  ℂ  ∧  𝑤  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑤  −  𝐴 ) ) )  ↔  ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) ) ) | 
						
							| 18 | 17 | cbvralvw | ⊢ ( ∀ 𝑤  ∈  𝐶 ( ( 𝑤  ∈  ℂ  ∧  𝑤  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑤  −  𝐴 ) ) )  ↔  ∀ 𝑦  ∈  𝐶 ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) ) | 
						
							| 19 | 18 | rexbii | ⊢ ( ∃ 𝑥  ∈  ℝ+ ∀ 𝑤  ∈  𝐶 ( ( 𝑤  ∈  ℂ  ∧  𝑤  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑤  −  𝐴 ) ) )  ↔  ∃ 𝑥  ∈  ℝ+ ∀ 𝑦  ∈  𝐶 ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) ) | 
						
							| 20 | 11 19 | sylib | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑦  ∈  𝐶 ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) ) |