Metamath Proof Explorer


Theorem cnrefiisp

Description: A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses cnrefiisp.a ( 𝜑𝐴 ∈ ℂ )
cnrefiisp.n ( 𝜑 → ¬ 𝐴 ∈ ℝ )
cnrefiisp.b ( 𝜑𝐵 ∈ Fin )
cnrefiisp.c 𝐶 = ( ℝ ∪ 𝐵 )
Assertion cnrefiisp ( 𝜑 → ∃ 𝑥 ∈ ℝ+𝑦𝐶 ( ( 𝑦 ∈ ℂ ∧ 𝑦𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 cnrefiisp.a ( 𝜑𝐴 ∈ ℂ )
2 cnrefiisp.n ( 𝜑 → ¬ 𝐴 ∈ ℝ )
3 cnrefiisp.b ( 𝜑𝐵 ∈ Fin )
4 cnrefiisp.c 𝐶 = ( ℝ ∪ 𝐵 )
5 eqid ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ 𝑤 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑤𝐴 ) ) } ) = ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ 𝑤 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑤𝐴 ) ) } )
6 fvoveq1 ( 𝑧 = 𝑤 → ( abs ‘ ( 𝑧𝐴 ) ) = ( abs ‘ ( 𝑤𝐴 ) ) )
7 6 sneqd ( 𝑧 = 𝑤 → { ( abs ‘ ( 𝑧𝐴 ) ) } = { ( abs ‘ ( 𝑤𝐴 ) ) } )
8 7 cbviunv 𝑧 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑧𝐴 ) ) } = 𝑤 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑤𝐴 ) ) }
9 8 uneq2i ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ 𝑧 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑧𝐴 ) ) } ) = ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ 𝑤 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑤𝐴 ) ) } )
10 9 infeq1i inf ( ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ 𝑧 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑧𝐴 ) ) } ) , ℝ* , < ) = inf ( ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ 𝑤 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑤𝐴 ) ) } ) , ℝ* , < )
11 1 2 3 4 5 10 cnrefiisplem ( 𝜑 → ∃ 𝑥 ∈ ℝ+𝑤𝐶 ( ( 𝑤 ∈ ℂ ∧ 𝑤𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑤𝐴 ) ) ) )
12 eleq1w ( 𝑤 = 𝑦 → ( 𝑤 ∈ ℂ ↔ 𝑦 ∈ ℂ ) )
13 neeq1 ( 𝑤 = 𝑦 → ( 𝑤𝐴𝑦𝐴 ) )
14 12 13 anbi12d ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ ℂ ∧ 𝑤𝐴 ) ↔ ( 𝑦 ∈ ℂ ∧ 𝑦𝐴 ) ) )
15 fvoveq1 ( 𝑤 = 𝑦 → ( abs ‘ ( 𝑤𝐴 ) ) = ( abs ‘ ( 𝑦𝐴 ) ) )
16 15 breq2d ( 𝑤 = 𝑦 → ( 𝑥 ≤ ( abs ‘ ( 𝑤𝐴 ) ) ↔ 𝑥 ≤ ( abs ‘ ( 𝑦𝐴 ) ) ) )
17 14 16 imbi12d ( 𝑤 = 𝑦 → ( ( ( 𝑤 ∈ ℂ ∧ 𝑤𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑤𝐴 ) ) ) ↔ ( ( 𝑦 ∈ ℂ ∧ 𝑦𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦𝐴 ) ) ) ) )
18 17 cbvralvw ( ∀ 𝑤𝐶 ( ( 𝑤 ∈ ℂ ∧ 𝑤𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑤𝐴 ) ) ) ↔ ∀ 𝑦𝐶 ( ( 𝑦 ∈ ℂ ∧ 𝑦𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦𝐴 ) ) ) )
19 18 rexbii ( ∃ 𝑥 ∈ ℝ+𝑤𝐶 ( ( 𝑤 ∈ ℂ ∧ 𝑤𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑤𝐴 ) ) ) ↔ ∃ 𝑥 ∈ ℝ+𝑦𝐶 ( ( 𝑦 ∈ ℂ ∧ 𝑦𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦𝐴 ) ) ) )
20 11 19 sylib ( 𝜑 → ∃ 𝑥 ∈ ℝ+𝑦𝐶 ( ( 𝑦 ∈ ℂ ∧ 𝑦𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦𝐴 ) ) ) )