Step |
Hyp |
Ref |
Expression |
1 |
|
cnrefiisp.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
cnrefiisp.n |
⊢ ( 𝜑 → ¬ 𝐴 ∈ ℝ ) |
3 |
|
cnrefiisp.b |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
4 |
|
cnrefiisp.c |
⊢ 𝐶 = ( ℝ ∪ 𝐵 ) |
5 |
|
eqid |
⊢ ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑤 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑤 − 𝐴 ) ) } ) = ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑤 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑤 − 𝐴 ) ) } ) |
6 |
|
fvoveq1 |
⊢ ( 𝑧 = 𝑤 → ( abs ‘ ( 𝑧 − 𝐴 ) ) = ( abs ‘ ( 𝑤 − 𝐴 ) ) ) |
7 |
6
|
sneqd |
⊢ ( 𝑧 = 𝑤 → { ( abs ‘ ( 𝑧 − 𝐴 ) ) } = { ( abs ‘ ( 𝑤 − 𝐴 ) ) } ) |
8 |
7
|
cbviunv |
⊢ ∪ 𝑧 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑧 − 𝐴 ) ) } = ∪ 𝑤 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑤 − 𝐴 ) ) } |
9 |
8
|
uneq2i |
⊢ ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑧 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑧 − 𝐴 ) ) } ) = ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑤 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑤 − 𝐴 ) ) } ) |
10 |
9
|
infeq1i |
⊢ inf ( ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑧 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑧 − 𝐴 ) ) } ) , ℝ* , < ) = inf ( ( { ( abs ‘ ( ℑ ‘ 𝐴 ) ) } ∪ ∪ 𝑤 ∈ ( ( 𝐵 ∩ ℂ ) ∖ { 𝐴 } ) { ( abs ‘ ( 𝑤 − 𝐴 ) ) } ) , ℝ* , < ) |
11 |
1 2 3 4 5 10
|
cnrefiisplem |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ+ ∀ 𝑤 ∈ 𝐶 ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑤 − 𝐴 ) ) ) ) |
12 |
|
eleq1w |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ ℂ ↔ 𝑦 ∈ ℂ ) ) |
13 |
|
neeq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ≠ 𝐴 ↔ 𝑦 ≠ 𝐴 ) ) |
14 |
12 13
|
anbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴 ) ↔ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ) ) |
15 |
|
fvoveq1 |
⊢ ( 𝑤 = 𝑦 → ( abs ‘ ( 𝑤 − 𝐴 ) ) = ( abs ‘ ( 𝑦 − 𝐴 ) ) ) |
16 |
15
|
breq2d |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 ≤ ( abs ‘ ( 𝑤 − 𝐴 ) ) ↔ 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) |
17 |
14 16
|
imbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑤 − 𝐴 ) ) ) ↔ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) ) |
18 |
17
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ 𝐶 ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑤 − 𝐴 ) ) ) ↔ ∀ 𝑦 ∈ 𝐶 ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) |
19 |
18
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℝ+ ∀ 𝑤 ∈ 𝐶 ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑤 − 𝐴 ) ) ) ↔ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝐶 ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) |
20 |
11 19
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝐶 ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) |