| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimxrre.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | xlimxrre.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | xlimxrre.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 4 |  | xlimxrre.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | xlimxrre.c | ⊢ ( 𝜑  →  𝐹 ~~>* 𝐴 ) | 
						
							| 6 |  | elioore | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 7 | 6 | anim2i | ⊢ ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) )  →  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) ) | 
						
							| 8 | 7 | ralimi | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) ) | 
						
							| 10 | 3 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 11 |  | ffvresb | ⊢ ( Fun  𝐹  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) ) ) | 
						
							| 14 | 9 13 | mpbird | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) ) )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) | 
						
							| 15 | 14 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) ) ) )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) | 
						
							| 16 |  | peano2rem | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  −  1 )  ∈  ℝ ) | 
						
							| 17 | 4 16 | syl | ⊢ ( 𝜑  →  ( 𝐴  −  1 )  ∈  ℝ ) | 
						
							| 18 | 17 | rexrd | ⊢ ( 𝜑  →  ( 𝐴  −  1 )  ∈  ℝ* ) | 
						
							| 19 |  | peano2re | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 20 | 4 19 | syl | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 21 | 20 | rexrd | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  ∈  ℝ* ) | 
						
							| 22 | 4 | ltm1d | ⊢ ( 𝜑  →  ( 𝐴  −  1 )  <  𝐴 ) | 
						
							| 23 | 4 | ltp1d | ⊢ ( 𝜑  →  𝐴  <  ( 𝐴  +  1 ) ) | 
						
							| 24 | 18 21 4 22 23 | eliood | ⊢ ( 𝜑  →  𝐴  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) ) | 
						
							| 25 |  | iooordt | ⊢ ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) )  ∈  ( ordTop ‘  ≤  ) | 
						
							| 26 |  | nfcv | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 27 |  | eqid | ⊢ ( ordTop ‘  ≤  )  =  ( ordTop ‘  ≤  ) | 
						
							| 28 | 26 1 2 3 27 | xlimbr | ⊢ ( 𝜑  →  ( 𝐹 ~~>* 𝐴  ↔  ( 𝐴  ∈  ℝ*  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝐴  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) ) | 
						
							| 29 | 5 28 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ*  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝐴  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) | 
						
							| 30 | 29 | simprd | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝐴  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 31 |  | eleq2 | ⊢ ( 𝑢  =  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) )  →  ( 𝐴  ∈  𝑢  ↔  𝐴  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) ) ) | 
						
							| 32 |  | eleq2 | ⊢ ( 𝑢  =  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑢  ↔  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) ) ) | 
						
							| 33 | 32 | anbi2d | ⊢ ( 𝑢  =  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 )  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) ) ) ) | 
						
							| 34 | 33 | rexralbidv | ⊢ ( 𝑢  =  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) )  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 )  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) ) ) ) | 
						
							| 35 | 31 34 | imbi12d | ⊢ ( 𝑢  =  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) )  →  ( ( 𝐴  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) )  ↔  ( 𝐴  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) ) ) ) ) | 
						
							| 36 | 35 | rspcva | ⊢ ( ( ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) )  ∈  ( ordTop ‘  ≤  )  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( 𝐴  ∈  𝑢  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  →  ( 𝐴  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) ) ) ) | 
						
							| 37 | 25 30 36 | sylancr | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) ) ) ) | 
						
							| 38 | 24 37 | mpd | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  −  1 ) (,) ( 𝐴  +  1 ) ) ) ) | 
						
							| 39 | 15 38 | reximddv | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) |