Step |
Hyp |
Ref |
Expression |
1 |
|
xlimxrre.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
xlimxrre.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
xlimxrre.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
4 |
|
xlimxrre.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
5 |
|
xlimxrre.c |
⊢ ( 𝜑 → 𝐹 ~~>* 𝐴 ) |
6 |
|
elioore |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
7 |
6
|
anim2i |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ) |
8 |
7
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ) |
10 |
3
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
11 |
|
ffvresb |
⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ) ) |
14 |
9 13
|
mpbird |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) |
15 |
14
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) ) ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) |
16 |
|
peano2rem |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) ∈ ℝ ) |
17 |
4 16
|
syl |
⊢ ( 𝜑 → ( 𝐴 − 1 ) ∈ ℝ ) |
18 |
17
|
rexrd |
⊢ ( 𝜑 → ( 𝐴 − 1 ) ∈ ℝ* ) |
19 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
20 |
4 19
|
syl |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℝ ) |
21 |
20
|
rexrd |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℝ* ) |
22 |
4
|
ltm1d |
⊢ ( 𝜑 → ( 𝐴 − 1 ) < 𝐴 ) |
23 |
4
|
ltp1d |
⊢ ( 𝜑 → 𝐴 < ( 𝐴 + 1 ) ) |
24 |
18 21 4 22 23
|
eliood |
⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) |
25 |
|
iooordt |
⊢ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ∈ ( ordTop ‘ ≤ ) |
26 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐹 |
27 |
|
eqid |
⊢ ( ordTop ‘ ≤ ) = ( ordTop ‘ ≤ ) |
28 |
26 1 2 3 27
|
xlimbr |
⊢ ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐴 ∈ ℝ* ∧ ∀ 𝑢 ∈ ( ordTop ‘ ≤ ) ( 𝐴 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
29 |
5 28
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ ∀ 𝑢 ∈ ( ordTop ‘ ≤ ) ( 𝐴 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
30 |
29
|
simprd |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( ordTop ‘ ≤ ) ( 𝐴 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
31 |
|
eleq2 |
⊢ ( 𝑢 = ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) → ( 𝐴 ∈ 𝑢 ↔ 𝐴 ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) ) |
32 |
|
eleq2 |
⊢ ( 𝑢 = ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) ) |
33 |
32
|
anbi2d |
⊢ ( 𝑢 = ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) ) ) |
34 |
33
|
rexralbidv |
⊢ ( 𝑢 = ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) ) ) |
35 |
31 34
|
imbi12d |
⊢ ( 𝑢 = ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) → ( ( 𝐴 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ↔ ( 𝐴 ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) ) ) ) |
36 |
35
|
rspcva |
⊢ ( ( ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ∈ ( ordTop ‘ ≤ ) ∧ ∀ 𝑢 ∈ ( ordTop ‘ ≤ ) ( 𝐴 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → ( 𝐴 ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) ) ) |
37 |
25 30 36
|
sylancr |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) ) ) |
38 |
24 37
|
mpd |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 − 1 ) (,) ( 𝐴 + 1 ) ) ) ) |
39 |
15 38
|
reximddv |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) |