Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis F e. dom ~> is probably not enough, since in principle we could have +oo e. CC and -oo e. CC ). (Contributed by Glauco Siliprandi, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xlimxrre.m | |
|
xlimxrre.z | |
||
xlimxrre.f | |
||
xlimxrre.a | |
||
xlimxrre.c | |
||
Assertion | xlimxrre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimxrre.m | |
|
2 | xlimxrre.z | |
|
3 | xlimxrre.f | |
|
4 | xlimxrre.a | |
|
5 | xlimxrre.c | |
|
6 | elioore | |
|
7 | 6 | anim2i | |
8 | 7 | ralimi | |
9 | 8 | adantl | |
10 | 3 | ffund | |
11 | ffvresb | |
|
12 | 10 11 | syl | |
13 | 12 | adantr | |
14 | 9 13 | mpbird | |
15 | 14 | adantrl | |
16 | peano2rem | |
|
17 | 4 16 | syl | |
18 | 17 | rexrd | |
19 | peano2re | |
|
20 | 4 19 | syl | |
21 | 20 | rexrd | |
22 | 4 | ltm1d | |
23 | 4 | ltp1d | |
24 | 18 21 4 22 23 | eliood | |
25 | iooordt | |
|
26 | nfcv | |
|
27 | eqid | |
|
28 | 26 1 2 3 27 | xlimbr | |
29 | 5 28 | mpbid | |
30 | 29 | simprd | |
31 | eleq2 | |
|
32 | eleq2 | |
|
33 | 32 | anbi2d | |
34 | 33 | rexralbidv | |
35 | 31 34 | imbi12d | |
36 | 35 | rspcva | |
37 | 25 30 36 | sylancr | |
38 | 24 37 | mpd | |
39 | 15 38 | reximddv | |