Metamath Proof Explorer


Theorem xlimxrre

Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis F e. dom ~> is probably not enough, since in principle we could have +oo e. CC and -oo e. CC ). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimxrre.m φ M
xlimxrre.z Z = M
xlimxrre.f φ F : Z *
xlimxrre.a φ A
xlimxrre.c φ F * A
Assertion xlimxrre φ j Z F j : j

Proof

Step Hyp Ref Expression
1 xlimxrre.m φ M
2 xlimxrre.z Z = M
3 xlimxrre.f φ F : Z *
4 xlimxrre.a φ A
5 xlimxrre.c φ F * A
6 elioore F k A 1 A + 1 F k
7 6 anim2i k dom F F k A 1 A + 1 k dom F F k
8 7 ralimi k j k dom F F k A 1 A + 1 k j k dom F F k
9 8 adantl φ k j k dom F F k A 1 A + 1 k j k dom F F k
10 3 ffund φ Fun F
11 ffvresb Fun F F j : j k j k dom F F k
12 10 11 syl φ F j : j k j k dom F F k
13 12 adantr φ k j k dom F F k A 1 A + 1 F j : j k j k dom F F k
14 9 13 mpbird φ k j k dom F F k A 1 A + 1 F j : j
15 14 adantrl φ j Z k j k dom F F k A 1 A + 1 F j : j
16 peano2rem A A 1
17 4 16 syl φ A 1
18 17 rexrd φ A 1 *
19 peano2re A A + 1
20 4 19 syl φ A + 1
21 20 rexrd φ A + 1 *
22 4 ltm1d φ A 1 < A
23 4 ltp1d φ A < A + 1
24 18 21 4 22 23 eliood φ A A 1 A + 1
25 iooordt A 1 A + 1 ordTop
26 nfcv _ k F
27 eqid ordTop = ordTop
28 26 1 2 3 27 xlimbr φ F * A A * u ordTop A u j Z k j k dom F F k u
29 5 28 mpbid φ A * u ordTop A u j Z k j k dom F F k u
30 29 simprd φ u ordTop A u j Z k j k dom F F k u
31 eleq2 u = A 1 A + 1 A u A A 1 A + 1
32 eleq2 u = A 1 A + 1 F k u F k A 1 A + 1
33 32 anbi2d u = A 1 A + 1 k dom F F k u k dom F F k A 1 A + 1
34 33 rexralbidv u = A 1 A + 1 j Z k j k dom F F k u j Z k j k dom F F k A 1 A + 1
35 31 34 imbi12d u = A 1 A + 1 A u j Z k j k dom F F k u A A 1 A + 1 j Z k j k dom F F k A 1 A + 1
36 35 rspcva A 1 A + 1 ordTop u ordTop A u j Z k j k dom F F k u A A 1 A + 1 j Z k j k dom F F k A 1 A + 1
37 25 30 36 sylancr φ A A 1 A + 1 j Z k j k dom F F k A 1 A + 1
38 24 37 mpd φ j Z k j k dom F F k A 1 A + 1
39 15 38 reximddv φ j Z F j : j