Metamath Proof Explorer


Theorem xlimxrre

Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis F e. dom ~> is probably not enough, since in principle we could have +oo e. CC and -oo e. CC ). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimxrre.m φM
xlimxrre.z Z=M
xlimxrre.f φF:Z*
xlimxrre.a φA
xlimxrre.c φF*A
Assertion xlimxrre φjZFj:j

Proof

Step Hyp Ref Expression
1 xlimxrre.m φM
2 xlimxrre.z Z=M
3 xlimxrre.f φF:Z*
4 xlimxrre.a φA
5 xlimxrre.c φF*A
6 elioore FkA1A+1Fk
7 6 anim2i kdomFFkA1A+1kdomFFk
8 7 ralimi kjkdomFFkA1A+1kjkdomFFk
9 8 adantl φkjkdomFFkA1A+1kjkdomFFk
10 3 ffund φFunF
11 ffvresb FunFFj:jkjkdomFFk
12 10 11 syl φFj:jkjkdomFFk
13 12 adantr φkjkdomFFkA1A+1Fj:jkjkdomFFk
14 9 13 mpbird φkjkdomFFkA1A+1Fj:j
15 14 adantrl φjZkjkdomFFkA1A+1Fj:j
16 peano2rem AA1
17 4 16 syl φA1
18 17 rexrd φA1*
19 peano2re AA+1
20 4 19 syl φA+1
21 20 rexrd φA+1*
22 4 ltm1d φA1<A
23 4 ltp1d φA<A+1
24 18 21 4 22 23 eliood φAA1A+1
25 iooordt A1A+1ordTop
26 nfcv _kF
27 eqid ordTop=ordTop
28 26 1 2 3 27 xlimbr φF*AA*uordTopAujZkjkdomFFku
29 5 28 mpbid φA*uordTopAujZkjkdomFFku
30 29 simprd φuordTopAujZkjkdomFFku
31 eleq2 u=A1A+1AuAA1A+1
32 eleq2 u=A1A+1FkuFkA1A+1
33 32 anbi2d u=A1A+1kdomFFkukdomFFkA1A+1
34 33 rexralbidv u=A1A+1jZkjkdomFFkujZkjkdomFFkA1A+1
35 31 34 imbi12d u=A1A+1AujZkjkdomFFkuAA1A+1jZkjkdomFFkA1A+1
36 35 rspcva A1A+1ordTopuordTopAujZkjkdomFFkuAA1A+1jZkjkdomFFkA1A+1
37 25 30 36 sylancr φAA1A+1jZkjkdomFFkA1A+1
38 24 37 mpd φjZkjkdomFFkA1A+1
39 15 38 reximddv φjZFj:j