Step |
Hyp |
Ref |
Expression |
1 |
|
xlimbr.k |
|
2 |
|
xlimbr.m |
|
3 |
|
xlimbr.z |
|
4 |
|
xlimbr.f |
|
5 |
|
xlimbr.j |
|
6 |
|
df-xlim |
|
7 |
6
|
breqi |
|
8 |
7
|
a1i |
|
9 |
|
letopon |
|
10 |
9
|
a1i |
|
11 |
1 10
|
lmbr3 |
|
12 |
|
simpr2 |
|
13 |
5
|
eqcomi |
|
14 |
13
|
raleqi |
|
15 |
3
|
rexuz3 |
|
16 |
15
|
bicomd |
|
17 |
16
|
imbi2d |
|
18 |
17
|
biimpd |
|
19 |
18
|
ralimdv |
|
20 |
2 19
|
syl |
|
21 |
20
|
imp |
|
22 |
14 21
|
sylan2b |
|
23 |
22
|
3ad2antr3 |
|
24 |
12 23
|
jca |
|
25 |
|
cnex |
|
26 |
25
|
a1i |
|
27 |
10
|
elfvexd |
|
28 |
3
|
uzsscn2 |
|
29 |
28
|
a1i |
|
30 |
26 27 29 4
|
fpmd |
|
31 |
30
|
adantr |
|
32 |
|
simprl |
|
33 |
17
|
biimprd |
|
34 |
33
|
ralimdv |
|
35 |
2 34
|
syl |
|
36 |
35
|
imp |
|
37 |
5
|
raleqi |
|
38 |
36 37
|
sylib |
|
39 |
38
|
adantrl |
|
40 |
31 32 39
|
3jca |
|
41 |
24 40
|
impbida |
|
42 |
8 11 41
|
3bitrd |
|