Metamath Proof Explorer


Theorem xlimbr

Description: Express the binary relation "sequence F converges to point P " w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimbr.k _ k F
xlimbr.m φ M
xlimbr.z Z = M
xlimbr.f φ F : Z *
xlimbr.j J = ordTop
Assertion xlimbr φ F * P P * u J P u j Z k j k dom F F k u

Proof

Step Hyp Ref Expression
1 xlimbr.k _ k F
2 xlimbr.m φ M
3 xlimbr.z Z = M
4 xlimbr.f φ F : Z *
5 xlimbr.j J = ordTop
6 df-xlim * = t ordTop
7 6 breqi F * P F t ordTop P
8 7 a1i φ F * P F t ordTop P
9 letopon ordTop TopOn *
10 9 a1i φ ordTop TopOn *
11 1 10 lmbr3 φ F t ordTop P F * 𝑝𝑚 P * u ordTop P u j k j k dom F F k u
12 simpr2 φ F * 𝑝𝑚 P * u ordTop P u j k j k dom F F k u P *
13 5 eqcomi ordTop = J
14 13 raleqi u ordTop P u j k j k dom F F k u u J P u j k j k dom F F k u
15 3 rexuz3 M j Z k j k dom F F k u j k j k dom F F k u
16 15 bicomd M j k j k dom F F k u j Z k j k dom F F k u
17 16 imbi2d M P u j k j k dom F F k u P u j Z k j k dom F F k u
18 17 biimpd M P u j k j k dom F F k u P u j Z k j k dom F F k u
19 18 ralimdv M u J P u j k j k dom F F k u u J P u j Z k j k dom F F k u
20 2 19 syl φ u J P u j k j k dom F F k u u J P u j Z k j k dom F F k u
21 20 imp φ u J P u j k j k dom F F k u u J P u j Z k j k dom F F k u
22 14 21 sylan2b φ u ordTop P u j k j k dom F F k u u J P u j Z k j k dom F F k u
23 22 3ad2antr3 φ F * 𝑝𝑚 P * u ordTop P u j k j k dom F F k u u J P u j Z k j k dom F F k u
24 12 23 jca φ F * 𝑝𝑚 P * u ordTop P u j k j k dom F F k u P * u J P u j Z k j k dom F F k u
25 cnex V
26 25 a1i φ V
27 10 elfvexd φ * V
28 3 uzsscn2 Z
29 28 a1i φ Z
30 26 27 29 4 fpmd φ F * 𝑝𝑚
31 30 adantr φ P * u J P u j Z k j k dom F F k u F * 𝑝𝑚
32 simprl φ P * u J P u j Z k j k dom F F k u P *
33 17 biimprd M P u j Z k j k dom F F k u P u j k j k dom F F k u
34 33 ralimdv M u J P u j Z k j k dom F F k u u J P u j k j k dom F F k u
35 2 34 syl φ u J P u j Z k j k dom F F k u u J P u j k j k dom F F k u
36 35 imp φ u J P u j Z k j k dom F F k u u J P u j k j k dom F F k u
37 5 raleqi u J P u j k j k dom F F k u u ordTop P u j k j k dom F F k u
38 36 37 sylib φ u J P u j Z k j k dom F F k u u ordTop P u j k j k dom F F k u
39 38 adantrl φ P * u J P u j Z k j k dom F F k u u ordTop P u j k j k dom F F k u
40 31 32 39 3jca φ P * u J P u j Z k j k dom F F k u F * 𝑝𝑚 P * u ordTop P u j k j k dom F F k u
41 24 40 impbida φ F * 𝑝𝑚 P * u ordTop P u j k j k dom F F k u P * u J P u j Z k j k dom F F k u
42 8 11 41 3bitrd φ F * P P * u J P u j Z k j k dom F F k u