Metamath Proof Explorer


Theorem lmbr3

Description: Express the binary relation "sequence F converges to point P " in a metric space using an arbitrary upper set of integers. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses lmbr3.1 _kF
lmbr3.2 φJTopOnX
Assertion lmbr3 φFtJPFX𝑝𝑚PXuJPujkjkdomFFku

Proof

Step Hyp Ref Expression
1 lmbr3.1 _kF
2 lmbr3.2 φJTopOnX
3 2 lmbr3v φFtJPFX𝑝𝑚PXvJPvilildomFFlv
4 eleq2w v=uPvPu
5 eleq2w v=uFlvFlu
6 5 anbi2d v=uldomFFlvldomFFlu
7 6 rexralbidv v=uilildomFFlvilildomFFlu
8 fveq2 i=ji=j
9 8 raleqdv i=jlildomFFluljldomFFlu
10 nfcv _kl
11 1 nfdm _kdomF
12 10 11 nfel kldomF
13 1 10 nffv _kFl
14 nfcv _ku
15 13 14 nfel kFlu
16 12 15 nfan kldomFFlu
17 nfv lkdomFFku
18 eleq1w l=kldomFkdomF
19 fveq2 l=kFl=Fk
20 19 eleq1d l=kFluFku
21 18 20 anbi12d l=kldomFFlukdomFFku
22 16 17 21 cbvralw ljldomFFlukjkdomFFku
23 9 22 bitrdi i=jlildomFFlukjkdomFFku
24 23 cbvrexvw ilildomFFlujkjkdomFFku
25 7 24 bitrdi v=uilildomFFlvjkjkdomFFku
26 4 25 imbi12d v=uPvilildomFFlvPujkjkdomFFku
27 26 cbvralvw vJPvilildomFFlvuJPujkjkdomFFku
28 27 3anbi3i FX𝑝𝑚PXvJPvilildomFFlvFX𝑝𝑚PXuJPujkjkdomFFku
29 3 28 bitrdi φFtJPFX𝑝𝑚PXuJPujkjkdomFFku