Metamath Proof Explorer


Theorem climrescn

Description: A sequence converging w.r.t. the standard topology on the complex numbers, eventually becomes a sequence of complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climrescn.m φ M
climrescn.z Z = M
climrescn.f φ F Fn Z
climrescn.c φ F dom
Assertion climrescn φ j Z F j : j

Proof

Step Hyp Ref Expression
1 climrescn.m φ M
2 climrescn.z Z = M
3 climrescn.f φ F Fn Z
4 climrescn.c φ F dom
5 nfv k φ i Z
6 nfra1 k k i F k F k F < 1
7 5 6 nfan k φ i Z k i F k F k F < 1
8 2 uztrn2 i Z k i k Z
9 8 adantll φ i Z k i k Z
10 3 fndmd φ dom F = Z
11 10 ad2antrr φ i Z k i dom F = Z
12 9 11 eleqtrrd φ i Z k i k dom F
13 12 adantlr φ i Z k i F k F k F < 1 k i k dom F
14 rspa k i F k F k F < 1 k i F k F k F < 1
15 14 adantll i Z k i F k F k F < 1 k i F k F k F < 1
16 15 simpld i Z k i F k F k F < 1 k i F k
17 16 adantlll φ i Z k i F k F k F < 1 k i F k
18 13 17 jca φ i Z k i F k F k F < 1 k i k dom F F k
19 7 18 ralrimia φ i Z k i F k F k F < 1 k i k dom F F k
20 fnfun F Fn Z Fun F
21 ffvresb Fun F F i : i k i k dom F F k
22 3 20 21 3syl φ F i : i k i k dom F F k
23 22 ad2antrr φ i Z k i F k F k F < 1 F i : i k i k dom F F k
24 19 23 mpbird φ i Z k i F k F k F < 1 F i : i
25 breq2 x = 1 F k F < x F k F < 1
26 25 anbi2d x = 1 F k F k F < x F k F k F < 1
27 26 rexralbidv x = 1 i k i F k F k F < x i k i F k F k F < 1
28 climdm F dom F F
29 4 28 sylib φ F F
30 eqidd φ k F k = F k
31 4 30 clim φ F F F x + i k i F k F k F < x
32 29 31 mpbid φ F x + i k i F k F k F < x
33 32 simprd φ x + i k i F k F k F < x
34 1rp 1 +
35 34 a1i φ 1 +
36 27 33 35 rspcdva φ i k i F k F k F < 1
37 2 rexuz3 M i Z k i F k F k F < 1 i k i F k F k F < 1
38 1 37 syl φ i Z k i F k F k F < 1 i k i F k F k F < 1
39 36 38 mpbird φ i Z k i F k F k F < 1
40 24 39 reximddv3 φ i Z F i : i
41 fveq2 j = i j = i
42 41 reseq2d j = i F j = F i
43 42 41 feq12d j = i F j : j F i : i
44 43 cbvrexvw j Z F j : j i Z F i : i
45 40 44 sylibr φ j Z F j : j