Step |
Hyp |
Ref |
Expression |
1 |
|
climrescn.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
climrescn.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
climrescn.f |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
4 |
|
climrescn.c |
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) |
5 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) |
6 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) |
7 |
5 6
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) |
8 |
2
|
uztrn2 |
⊢ ( ( 𝑖 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑘 ∈ 𝑍 ) |
9 |
8
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑘 ∈ 𝑍 ) |
10 |
3
|
fndmd |
⊢ ( 𝜑 → dom 𝐹 = 𝑍 ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → dom 𝐹 = 𝑍 ) |
12 |
9 11
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑘 ∈ dom 𝐹 ) |
13 |
12
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑘 ∈ dom 𝐹 ) |
14 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) |
15 |
14
|
adantll |
⊢ ( ( ( 𝑖 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) |
16 |
15
|
simpld |
⊢ ( ( ( 𝑖 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
17 |
16
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
18 |
13 17
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
19 |
7 18
|
ralrimia |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
20 |
|
fnfun |
⊢ ( 𝐹 Fn 𝑍 → Fun 𝐹 ) |
21 |
|
ffvresb |
⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℂ ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) ) |
22 |
3 20 21
|
3syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℂ ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) ) |
23 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℂ ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) ) |
24 |
19 23
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℂ ) |
25 |
|
breq2 |
⊢ ( 𝑥 = 1 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) |
26 |
25
|
anbi2d |
⊢ ( 𝑥 = 1 → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) ) |
27 |
26
|
rexralbidv |
⊢ ( 𝑥 = 1 → ( ∃ 𝑖 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 𝑥 ) ↔ ∃ 𝑖 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) ) |
28 |
|
climdm |
⊢ ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
29 |
4 28
|
sylib |
⊢ ( 𝜑 → 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
30 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
31 |
4 30
|
clim |
⊢ ( 𝜑 → ( 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ↔ ( ( ⇝ ‘ 𝐹 ) ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑖 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 𝑥 ) ) ) ) |
32 |
29 31
|
mpbid |
⊢ ( 𝜑 → ( ( ⇝ ‘ 𝐹 ) ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑖 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 𝑥 ) ) ) |
33 |
32
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑖 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 𝑥 ) ) |
34 |
|
1rp |
⊢ 1 ∈ ℝ+ |
35 |
34
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
36 |
27 33 35
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) |
37 |
2
|
rexuz3 |
⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ↔ ∃ 𝑖 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) ) |
38 |
1 37
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ↔ ∃ 𝑖 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) ) |
39 |
36 38
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑖 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( ⇝ ‘ 𝐹 ) ) ) < 1 ) ) |
40 |
24 39
|
reximddv3 |
⊢ ( 𝜑 → ∃ 𝑖 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℂ ) |
41 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑖 ) ) |
42 |
41
|
reseq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) = ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
43 |
42 41
|
feq12d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℂ ) ) |
44 |
43
|
cbvrexvw |
⊢ ( ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ ↔ ∃ 𝑖 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) : ( ℤ≥ ‘ 𝑖 ) ⟶ ℂ ) |
45 |
40 44
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ ) |