Step |
Hyp |
Ref |
Expression |
1 |
|
climxrrelem.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
climxrrelem.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
climxrrelem.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
4 |
|
climxrrelem.c |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
5 |
|
climxrrelem.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) |
6 |
|
climxrrelem.p |
⊢ ( ( 𝜑 ∧ +∞ ∈ ℂ ) → 𝐷 ≤ ( abs ‘ ( +∞ − 𝐴 ) ) ) |
7 |
|
climxrrelem.n |
⊢ ( ( 𝜑 ∧ -∞ ∈ ℂ ) → 𝐷 ≤ ( abs ‘ ( -∞ − 𝐴 ) ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
9 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 |
10 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) |
11 |
9 10
|
nfan |
⊢ Ⅎ 𝑘 ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) |
12 |
8 11
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ) |
13 |
2
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
14 |
13
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
15 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝑍 ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → dom 𝐹 = 𝑍 ) |
17 |
14 16
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ dom 𝐹 ) |
18 |
17
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ dom 𝐹 ) |
19 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝜑 ) |
20 |
14
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
21 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) |
22 |
21
|
adantll |
⊢ ( ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) |
23 |
22
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) |
24 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
25 |
24
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
26 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → 𝜑 ) |
27 |
|
simpr |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → ( 𝐹 ‘ 𝑘 ) = -∞ ) |
28 |
|
simpl |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
29 |
27 28
|
eqeltrrd |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → -∞ ∈ ℂ ) |
30 |
29
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → -∞ ∈ ℂ ) |
31 |
26 30 7
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → 𝐷 ≤ ( abs ‘ ( -∞ − 𝐴 ) ) ) |
32 |
31
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → 𝐷 ≤ ( abs ‘ ( -∞ − 𝐴 ) ) ) |
33 |
|
fvoveq1 |
⊢ ( ( 𝐹 ‘ 𝑘 ) = -∞ → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) = ( abs ‘ ( -∞ − 𝐴 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) = ( abs ‘ ( -∞ − 𝐴 ) ) ) |
35 |
|
simpl |
⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) |
36 |
34 35
|
eqbrtrrd |
⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → ( abs ‘ ( -∞ − 𝐴 ) ) < 𝐷 ) |
37 |
36
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → ( abs ‘ ( -∞ − 𝐴 ) ) < 𝐷 ) |
38 |
37
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → ( abs ‘ ( -∞ − 𝐴 ) ) < 𝐷 ) |
39 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
40 |
39
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
41 |
3 40
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
42 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
43 |
41 42
|
clim |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
44 |
4 43
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
45 |
44
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → 𝐴 ∈ ℂ ) |
47 |
30 46
|
subcld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → ( -∞ − 𝐴 ) ∈ ℂ ) |
48 |
47
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → ( abs ‘ ( -∞ − 𝐴 ) ) ∈ ℝ ) |
49 |
48
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → ( abs ‘ ( -∞ − 𝐴 ) ) ∈ ℝ ) |
50 |
5
|
rpred |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
51 |
50
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → 𝐷 ∈ ℝ ) |
52 |
49 51
|
ltnled |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → ( ( abs ‘ ( -∞ − 𝐴 ) ) < 𝐷 ↔ ¬ 𝐷 ≤ ( abs ‘ ( -∞ − 𝐴 ) ) ) ) |
53 |
38 52
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑘 ) = -∞ ) → ¬ 𝐷 ≤ ( abs ‘ ( -∞ − 𝐴 ) ) ) |
54 |
32 53
|
pm2.65da |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) → ¬ ( 𝐹 ‘ 𝑘 ) = -∞ ) |
55 |
54
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) → ¬ ( 𝐹 ‘ 𝑘 ) = -∞ ) |
56 |
55
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) → ( 𝐹 ‘ 𝑘 ) ≠ -∞ ) |
57 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → 𝜑 ) |
58 |
|
simpr |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → ( 𝐹 ‘ 𝑘 ) = +∞ ) |
59 |
|
simpl |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
60 |
58 59
|
eqeltrrd |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → +∞ ∈ ℂ ) |
61 |
60
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → +∞ ∈ ℂ ) |
62 |
57 61 6
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → 𝐷 ≤ ( abs ‘ ( +∞ − 𝐴 ) ) ) |
63 |
62
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → 𝐷 ≤ ( abs ‘ ( +∞ − 𝐴 ) ) ) |
64 |
|
fvoveq1 |
⊢ ( ( 𝐹 ‘ 𝑘 ) = +∞ → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) = ( abs ‘ ( +∞ − 𝐴 ) ) ) |
65 |
64
|
adantl |
⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) = ( abs ‘ ( +∞ − 𝐴 ) ) ) |
66 |
|
simpl |
⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) |
67 |
65 66
|
eqbrtrrd |
⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → ( abs ‘ ( +∞ − 𝐴 ) ) < 𝐷 ) |
68 |
67
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → ( abs ‘ ( +∞ − 𝐴 ) ) < 𝐷 ) |
69 |
68
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → ( abs ‘ ( +∞ − 𝐴 ) ) < 𝐷 ) |
70 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → 𝐴 ∈ ℂ ) |
71 |
61 70
|
subcld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → ( +∞ − 𝐴 ) ∈ ℂ ) |
72 |
71
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → ( abs ‘ ( +∞ − 𝐴 ) ) ∈ ℝ ) |
73 |
72
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → ( abs ‘ ( +∞ − 𝐴 ) ) ∈ ℝ ) |
74 |
50
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → 𝐷 ∈ ℝ ) |
75 |
73 74
|
ltnled |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → ( ( abs ‘ ( +∞ − 𝐴 ) ) < 𝐷 ↔ ¬ 𝐷 ≤ ( abs ‘ ( +∞ − 𝐴 ) ) ) ) |
76 |
69 75
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑘 ) = +∞ ) → ¬ 𝐷 ≤ ( abs ‘ ( +∞ − 𝐴 ) ) ) |
77 |
63 76
|
pm2.65da |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) → ¬ ( 𝐹 ‘ 𝑘 ) = +∞ ) |
78 |
77
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) → ¬ ( 𝐹 ‘ 𝑘 ) = +∞ ) |
79 |
78
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) → ( 𝐹 ‘ 𝑘 ) ≠ +∞ ) |
80 |
25 56 79
|
xrred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
81 |
19 20 23 80
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
82 |
18 81
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ) |
83 |
12 82
|
ralrimia |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ) |
84 |
3
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
85 |
|
ffvresb |
⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ) ) |
86 |
84 85
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ) ) |
87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ) ) |
88 |
83 87
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) |
89 |
|
breq2 |
⊢ ( 𝑥 = 𝐷 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) |
90 |
89
|
anbi2d |
⊢ ( 𝑥 = 𝐷 → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ) |
91 |
90
|
rexralbidv |
⊢ ( 𝑥 = 𝐷 → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ) |
92 |
44
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
93 |
91 92 5
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) |
94 |
2
|
rexuz3 |
⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ) |
95 |
1 94
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) ) |
96 |
93 95
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝐷 ) ) |
97 |
88 96
|
reximddv |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) |