| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climxrrelem.m |
|- ( ph -> M e. ZZ ) |
| 2 |
|
climxrrelem.z |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
climxrrelem.f |
|- ( ph -> F : Z --> RR* ) |
| 4 |
|
climxrrelem.c |
|- ( ph -> F ~~> A ) |
| 5 |
|
climxrrelem.d |
|- ( ph -> D e. RR+ ) |
| 6 |
|
climxrrelem.p |
|- ( ( ph /\ +oo e. CC ) -> D <_ ( abs ` ( +oo - A ) ) ) |
| 7 |
|
climxrrelem.n |
|- ( ( ph /\ -oo e. CC ) -> D <_ ( abs ` ( -oo - A ) ) ) |
| 8 |
|
nfv |
|- F/ k ph |
| 9 |
|
nfv |
|- F/ k j e. Z |
| 10 |
|
nfra1 |
|- F/ k A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) |
| 11 |
9 10
|
nfan |
|- F/ k ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) |
| 12 |
8 11
|
nfan |
|- F/ k ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) |
| 13 |
2
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 14 |
13
|
adantll |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 15 |
3
|
fdmd |
|- ( ph -> dom F = Z ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> dom F = Z ) |
| 17 |
14 16
|
eleqtrrd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> k e. dom F ) |
| 18 |
17
|
adantlrr |
|- ( ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. dom F ) |
| 19 |
|
simpll |
|- ( ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ph ) |
| 20 |
14
|
adantlrr |
|- ( ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 21 |
|
rspa |
|- ( ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) |
| 22 |
21
|
adantll |
|- ( ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) |
| 23 |
22
|
adantll |
|- ( ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) |
| 24 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR* ) |
| 25 |
24
|
3adant3 |
|- ( ( ph /\ k e. Z /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> ( F ` k ) e. RR* ) |
| 26 |
|
simpll |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = -oo ) -> ph ) |
| 27 |
|
simpr |
|- ( ( ( F ` k ) e. CC /\ ( F ` k ) = -oo ) -> ( F ` k ) = -oo ) |
| 28 |
|
simpl |
|- ( ( ( F ` k ) e. CC /\ ( F ` k ) = -oo ) -> ( F ` k ) e. CC ) |
| 29 |
27 28
|
eqeltrrd |
|- ( ( ( F ` k ) e. CC /\ ( F ` k ) = -oo ) -> -oo e. CC ) |
| 30 |
29
|
adantll |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = -oo ) -> -oo e. CC ) |
| 31 |
26 30 7
|
syl2anc |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = -oo ) -> D <_ ( abs ` ( -oo - A ) ) ) |
| 32 |
31
|
adantlrr |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = -oo ) -> D <_ ( abs ` ( -oo - A ) ) ) |
| 33 |
|
fvoveq1 |
|- ( ( F ` k ) = -oo -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( -oo - A ) ) ) |
| 34 |
33
|
adantl |
|- ( ( ( abs ` ( ( F ` k ) - A ) ) < D /\ ( F ` k ) = -oo ) -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( -oo - A ) ) ) |
| 35 |
|
simpl |
|- ( ( ( abs ` ( ( F ` k ) - A ) ) < D /\ ( F ` k ) = -oo ) -> ( abs ` ( ( F ` k ) - A ) ) < D ) |
| 36 |
34 35
|
eqbrtrrd |
|- ( ( ( abs ` ( ( F ` k ) - A ) ) < D /\ ( F ` k ) = -oo ) -> ( abs ` ( -oo - A ) ) < D ) |
| 37 |
36
|
adantll |
|- ( ( ( ph /\ ( abs ` ( ( F ` k ) - A ) ) < D ) /\ ( F ` k ) = -oo ) -> ( abs ` ( -oo - A ) ) < D ) |
| 38 |
37
|
adantlrl |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = -oo ) -> ( abs ` ( -oo - A ) ) < D ) |
| 39 |
2
|
fvexi |
|- Z e. _V |
| 40 |
39
|
a1i |
|- ( ph -> Z e. _V ) |
| 41 |
3 40
|
fexd |
|- ( ph -> F e. _V ) |
| 42 |
|
eqidd |
|- ( ( ph /\ k e. ZZ ) -> ( F ` k ) = ( F ` k ) ) |
| 43 |
41 42
|
clim |
|- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) ) |
| 44 |
4 43
|
mpbid |
|- ( ph -> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) |
| 45 |
44
|
simpld |
|- ( ph -> A e. CC ) |
| 46 |
45
|
ad2antrr |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = -oo ) -> A e. CC ) |
| 47 |
30 46
|
subcld |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = -oo ) -> ( -oo - A ) e. CC ) |
| 48 |
47
|
abscld |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = -oo ) -> ( abs ` ( -oo - A ) ) e. RR ) |
| 49 |
48
|
adantlrr |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = -oo ) -> ( abs ` ( -oo - A ) ) e. RR ) |
| 50 |
5
|
rpred |
|- ( ph -> D e. RR ) |
| 51 |
50
|
ad2antrr |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = -oo ) -> D e. RR ) |
| 52 |
49 51
|
ltnled |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = -oo ) -> ( ( abs ` ( -oo - A ) ) < D <-> -. D <_ ( abs ` ( -oo - A ) ) ) ) |
| 53 |
38 52
|
mpbid |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = -oo ) -> -. D <_ ( abs ` ( -oo - A ) ) ) |
| 54 |
32 53
|
pm2.65da |
|- ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> -. ( F ` k ) = -oo ) |
| 55 |
54
|
3adant2 |
|- ( ( ph /\ k e. Z /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> -. ( F ` k ) = -oo ) |
| 56 |
55
|
neqned |
|- ( ( ph /\ k e. Z /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> ( F ` k ) =/= -oo ) |
| 57 |
|
simpll |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = +oo ) -> ph ) |
| 58 |
|
simpr |
|- ( ( ( F ` k ) e. CC /\ ( F ` k ) = +oo ) -> ( F ` k ) = +oo ) |
| 59 |
|
simpl |
|- ( ( ( F ` k ) e. CC /\ ( F ` k ) = +oo ) -> ( F ` k ) e. CC ) |
| 60 |
58 59
|
eqeltrrd |
|- ( ( ( F ` k ) e. CC /\ ( F ` k ) = +oo ) -> +oo e. CC ) |
| 61 |
60
|
adantll |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = +oo ) -> +oo e. CC ) |
| 62 |
57 61 6
|
syl2anc |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = +oo ) -> D <_ ( abs ` ( +oo - A ) ) ) |
| 63 |
62
|
adantlrr |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = +oo ) -> D <_ ( abs ` ( +oo - A ) ) ) |
| 64 |
|
fvoveq1 |
|- ( ( F ` k ) = +oo -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( +oo - A ) ) ) |
| 65 |
64
|
adantl |
|- ( ( ( abs ` ( ( F ` k ) - A ) ) < D /\ ( F ` k ) = +oo ) -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( +oo - A ) ) ) |
| 66 |
|
simpl |
|- ( ( ( abs ` ( ( F ` k ) - A ) ) < D /\ ( F ` k ) = +oo ) -> ( abs ` ( ( F ` k ) - A ) ) < D ) |
| 67 |
65 66
|
eqbrtrrd |
|- ( ( ( abs ` ( ( F ` k ) - A ) ) < D /\ ( F ` k ) = +oo ) -> ( abs ` ( +oo - A ) ) < D ) |
| 68 |
67
|
adantll |
|- ( ( ( ph /\ ( abs ` ( ( F ` k ) - A ) ) < D ) /\ ( F ` k ) = +oo ) -> ( abs ` ( +oo - A ) ) < D ) |
| 69 |
68
|
adantlrl |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = +oo ) -> ( abs ` ( +oo - A ) ) < D ) |
| 70 |
45
|
ad2antrr |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = +oo ) -> A e. CC ) |
| 71 |
61 70
|
subcld |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = +oo ) -> ( +oo - A ) e. CC ) |
| 72 |
71
|
abscld |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = +oo ) -> ( abs ` ( +oo - A ) ) e. RR ) |
| 73 |
72
|
adantlrr |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = +oo ) -> ( abs ` ( +oo - A ) ) e. RR ) |
| 74 |
50
|
ad2antrr |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = +oo ) -> D e. RR ) |
| 75 |
73 74
|
ltnled |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = +oo ) -> ( ( abs ` ( +oo - A ) ) < D <-> -. D <_ ( abs ` ( +oo - A ) ) ) ) |
| 76 |
69 75
|
mpbid |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = +oo ) -> -. D <_ ( abs ` ( +oo - A ) ) ) |
| 77 |
63 76
|
pm2.65da |
|- ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> -. ( F ` k ) = +oo ) |
| 78 |
77
|
3adant2 |
|- ( ( ph /\ k e. Z /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> -. ( F ` k ) = +oo ) |
| 79 |
78
|
neqned |
|- ( ( ph /\ k e. Z /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> ( F ` k ) =/= +oo ) |
| 80 |
25 56 79
|
xrred |
|- ( ( ph /\ k e. Z /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> ( F ` k ) e. RR ) |
| 81 |
19 20 23 80
|
syl3anc |
|- ( ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. RR ) |
| 82 |
18 81
|
jca |
|- ( ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( k e. dom F /\ ( F ` k ) e. RR ) ) |
| 83 |
12 82
|
ralrimia |
|- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) -> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. RR ) ) |
| 84 |
3
|
ffund |
|- ( ph -> Fun F ) |
| 85 |
|
ffvresb |
|- ( Fun F -> ( ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR <-> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. RR ) ) ) |
| 86 |
84 85
|
syl |
|- ( ph -> ( ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR <-> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. RR ) ) ) |
| 87 |
86
|
adantr |
|- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) -> ( ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR <-> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. RR ) ) ) |
| 88 |
83 87
|
mpbird |
|- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) |
| 89 |
|
breq2 |
|- ( x = D -> ( ( abs ` ( ( F ` k ) - A ) ) < x <-> ( abs ` ( ( F ` k ) - A ) ) < D ) ) |
| 90 |
89
|
anbi2d |
|- ( x = D -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) |
| 91 |
90
|
rexralbidv |
|- ( x = D -> ( E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) |
| 92 |
44
|
simprd |
|- ( ph -> A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) |
| 93 |
91 92 5
|
rspcdva |
|- ( ph -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) |
| 94 |
2
|
rexuz3 |
|- ( M e. ZZ -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) |
| 95 |
1 94
|
syl |
|- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) |
| 96 |
93 95
|
mpbird |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) |
| 97 |
88 96
|
reximddv |
|- ( ph -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) |