Step |
Hyp |
Ref |
Expression |
1 |
|
climxrrelem.m |
|- ( ph -> M e. ZZ ) |
2 |
|
climxrrelem.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
climxrrelem.f |
|- ( ph -> F : Z --> RR* ) |
4 |
|
climxrrelem.c |
|- ( ph -> F ~~> A ) |
5 |
|
climxrrelem.d |
|- ( ph -> D e. RR+ ) |
6 |
|
climxrrelem.p |
|- ( ( ph /\ +oo e. CC ) -> D <_ ( abs ` ( +oo - A ) ) ) |
7 |
|
climxrrelem.n |
|- ( ( ph /\ -oo e. CC ) -> D <_ ( abs ` ( -oo - A ) ) ) |
8 |
|
nfv |
|- F/ k ph |
9 |
|
nfv |
|- F/ k j e. Z |
10 |
|
nfra1 |
|- F/ k A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) |
11 |
9 10
|
nfan |
|- F/ k ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) |
12 |
8 11
|
nfan |
|- F/ k ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) |
13 |
2
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
14 |
13
|
adantll |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
15 |
3
|
fdmd |
|- ( ph -> dom F = Z ) |
16 |
15
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> dom F = Z ) |
17 |
14 16
|
eleqtrrd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> k e. dom F ) |
18 |
17
|
adantlrr |
|- ( ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. dom F ) |
19 |
|
simpll |
|- ( ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ph ) |
20 |
14
|
adantlrr |
|- ( ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
21 |
|
rspa |
|- ( ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) |
22 |
21
|
adantll |
|- ( ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) |
23 |
22
|
adantll |
|- ( ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) |
24 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR* ) |
25 |
24
|
3adant3 |
|- ( ( ph /\ k e. Z /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> ( F ` k ) e. RR* ) |
26 |
|
simpll |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = -oo ) -> ph ) |
27 |
|
simpr |
|- ( ( ( F ` k ) e. CC /\ ( F ` k ) = -oo ) -> ( F ` k ) = -oo ) |
28 |
|
simpl |
|- ( ( ( F ` k ) e. CC /\ ( F ` k ) = -oo ) -> ( F ` k ) e. CC ) |
29 |
27 28
|
eqeltrrd |
|- ( ( ( F ` k ) e. CC /\ ( F ` k ) = -oo ) -> -oo e. CC ) |
30 |
29
|
adantll |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = -oo ) -> -oo e. CC ) |
31 |
26 30 7
|
syl2anc |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = -oo ) -> D <_ ( abs ` ( -oo - A ) ) ) |
32 |
31
|
adantlrr |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = -oo ) -> D <_ ( abs ` ( -oo - A ) ) ) |
33 |
|
fvoveq1 |
|- ( ( F ` k ) = -oo -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( -oo - A ) ) ) |
34 |
33
|
adantl |
|- ( ( ( abs ` ( ( F ` k ) - A ) ) < D /\ ( F ` k ) = -oo ) -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( -oo - A ) ) ) |
35 |
|
simpl |
|- ( ( ( abs ` ( ( F ` k ) - A ) ) < D /\ ( F ` k ) = -oo ) -> ( abs ` ( ( F ` k ) - A ) ) < D ) |
36 |
34 35
|
eqbrtrrd |
|- ( ( ( abs ` ( ( F ` k ) - A ) ) < D /\ ( F ` k ) = -oo ) -> ( abs ` ( -oo - A ) ) < D ) |
37 |
36
|
adantll |
|- ( ( ( ph /\ ( abs ` ( ( F ` k ) - A ) ) < D ) /\ ( F ` k ) = -oo ) -> ( abs ` ( -oo - A ) ) < D ) |
38 |
37
|
adantlrl |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = -oo ) -> ( abs ` ( -oo - A ) ) < D ) |
39 |
2
|
fvexi |
|- Z e. _V |
40 |
39
|
a1i |
|- ( ph -> Z e. _V ) |
41 |
3 40
|
fexd |
|- ( ph -> F e. _V ) |
42 |
|
eqidd |
|- ( ( ph /\ k e. ZZ ) -> ( F ` k ) = ( F ` k ) ) |
43 |
41 42
|
clim |
|- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) ) |
44 |
4 43
|
mpbid |
|- ( ph -> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) |
45 |
44
|
simpld |
|- ( ph -> A e. CC ) |
46 |
45
|
ad2antrr |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = -oo ) -> A e. CC ) |
47 |
30 46
|
subcld |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = -oo ) -> ( -oo - A ) e. CC ) |
48 |
47
|
abscld |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = -oo ) -> ( abs ` ( -oo - A ) ) e. RR ) |
49 |
48
|
adantlrr |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = -oo ) -> ( abs ` ( -oo - A ) ) e. RR ) |
50 |
5
|
rpred |
|- ( ph -> D e. RR ) |
51 |
50
|
ad2antrr |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = -oo ) -> D e. RR ) |
52 |
49 51
|
ltnled |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = -oo ) -> ( ( abs ` ( -oo - A ) ) < D <-> -. D <_ ( abs ` ( -oo - A ) ) ) ) |
53 |
38 52
|
mpbid |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = -oo ) -> -. D <_ ( abs ` ( -oo - A ) ) ) |
54 |
32 53
|
pm2.65da |
|- ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> -. ( F ` k ) = -oo ) |
55 |
54
|
3adant2 |
|- ( ( ph /\ k e. Z /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> -. ( F ` k ) = -oo ) |
56 |
55
|
neqned |
|- ( ( ph /\ k e. Z /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> ( F ` k ) =/= -oo ) |
57 |
|
simpll |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = +oo ) -> ph ) |
58 |
|
simpr |
|- ( ( ( F ` k ) e. CC /\ ( F ` k ) = +oo ) -> ( F ` k ) = +oo ) |
59 |
|
simpl |
|- ( ( ( F ` k ) e. CC /\ ( F ` k ) = +oo ) -> ( F ` k ) e. CC ) |
60 |
58 59
|
eqeltrrd |
|- ( ( ( F ` k ) e. CC /\ ( F ` k ) = +oo ) -> +oo e. CC ) |
61 |
60
|
adantll |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = +oo ) -> +oo e. CC ) |
62 |
57 61 6
|
syl2anc |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = +oo ) -> D <_ ( abs ` ( +oo - A ) ) ) |
63 |
62
|
adantlrr |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = +oo ) -> D <_ ( abs ` ( +oo - A ) ) ) |
64 |
|
fvoveq1 |
|- ( ( F ` k ) = +oo -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( +oo - A ) ) ) |
65 |
64
|
adantl |
|- ( ( ( abs ` ( ( F ` k ) - A ) ) < D /\ ( F ` k ) = +oo ) -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( +oo - A ) ) ) |
66 |
|
simpl |
|- ( ( ( abs ` ( ( F ` k ) - A ) ) < D /\ ( F ` k ) = +oo ) -> ( abs ` ( ( F ` k ) - A ) ) < D ) |
67 |
65 66
|
eqbrtrrd |
|- ( ( ( abs ` ( ( F ` k ) - A ) ) < D /\ ( F ` k ) = +oo ) -> ( abs ` ( +oo - A ) ) < D ) |
68 |
67
|
adantll |
|- ( ( ( ph /\ ( abs ` ( ( F ` k ) - A ) ) < D ) /\ ( F ` k ) = +oo ) -> ( abs ` ( +oo - A ) ) < D ) |
69 |
68
|
adantlrl |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = +oo ) -> ( abs ` ( +oo - A ) ) < D ) |
70 |
45
|
ad2antrr |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = +oo ) -> A e. CC ) |
71 |
61 70
|
subcld |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = +oo ) -> ( +oo - A ) e. CC ) |
72 |
71
|
abscld |
|- ( ( ( ph /\ ( F ` k ) e. CC ) /\ ( F ` k ) = +oo ) -> ( abs ` ( +oo - A ) ) e. RR ) |
73 |
72
|
adantlrr |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = +oo ) -> ( abs ` ( +oo - A ) ) e. RR ) |
74 |
50
|
ad2antrr |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = +oo ) -> D e. RR ) |
75 |
73 74
|
ltnled |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = +oo ) -> ( ( abs ` ( +oo - A ) ) < D <-> -. D <_ ( abs ` ( +oo - A ) ) ) ) |
76 |
69 75
|
mpbid |
|- ( ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) /\ ( F ` k ) = +oo ) -> -. D <_ ( abs ` ( +oo - A ) ) ) |
77 |
63 76
|
pm2.65da |
|- ( ( ph /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> -. ( F ` k ) = +oo ) |
78 |
77
|
3adant2 |
|- ( ( ph /\ k e. Z /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> -. ( F ` k ) = +oo ) |
79 |
78
|
neqned |
|- ( ( ph /\ k e. Z /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> ( F ` k ) =/= +oo ) |
80 |
25 56 79
|
xrred |
|- ( ( ph /\ k e. Z /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) -> ( F ` k ) e. RR ) |
81 |
19 20 23 80
|
syl3anc |
|- ( ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. RR ) |
82 |
18 81
|
jca |
|- ( ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( k e. dom F /\ ( F ` k ) e. RR ) ) |
83 |
12 82
|
ralrimia |
|- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) -> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. RR ) ) |
84 |
3
|
ffund |
|- ( ph -> Fun F ) |
85 |
|
ffvresb |
|- ( Fun F -> ( ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR <-> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. RR ) ) ) |
86 |
84 85
|
syl |
|- ( ph -> ( ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR <-> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. RR ) ) ) |
87 |
86
|
adantr |
|- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) -> ( ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR <-> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. RR ) ) ) |
88 |
83 87
|
mpbird |
|- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) |
89 |
|
breq2 |
|- ( x = D -> ( ( abs ` ( ( F ` k ) - A ) ) < x <-> ( abs ` ( ( F ` k ) - A ) ) < D ) ) |
90 |
89
|
anbi2d |
|- ( x = D -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) |
91 |
90
|
rexralbidv |
|- ( x = D -> ( E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) |
92 |
44
|
simprd |
|- ( ph -> A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) |
93 |
91 92 5
|
rspcdva |
|- ( ph -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) |
94 |
2
|
rexuz3 |
|- ( M e. ZZ -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) |
95 |
1 94
|
syl |
|- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) ) |
96 |
93 95
|
mpbird |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < D ) ) |
97 |
88 96
|
reximddv |
|- ( ph -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) |