| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							clim.1 | 
							⊢ ( 𝜑  →  𝐹  ∈  𝑉 )  | 
						
						
							| 2 | 
							
								
							 | 
							clim.3 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( 𝐹 ‘ 𝑘 )  =  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							climrel | 
							⊢ Rel   ⇝   | 
						
						
							| 4 | 
							
								3
							 | 
							brrelex2i | 
							⊢ ( 𝐹  ⇝  𝐴  →  𝐴  ∈  V )  | 
						
						
							| 5 | 
							
								4
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  →  𝐴  ∈  V ) )  | 
						
						
							| 6 | 
							
								
							 | 
							elex | 
							⊢ ( 𝐴  ∈  ℂ  →  𝐴  ∈  V )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) )  →  𝐴  ∈  V )  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) )  →  𝐴  ∈  V ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  𝑦  =  𝐴 )  | 
						
						
							| 10 | 
							
								9
							 | 
							eleq1d | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( 𝑦  ∈  ℂ  ↔  𝐴  ∈  ℂ ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							eleq1d | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ( 𝑓 ‘ 𝑘 )  ∈  ℂ  ↔  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  | 
						
						
							| 14 | 
							
								
							 | 
							oveq12 | 
							⊢ ( ( ( 𝑓 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 )  ∧  𝑦  =  𝐴 )  →  ( ( 𝑓 ‘ 𝑘 )  −  𝑦 )  =  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							sylan | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ( 𝑓 ‘ 𝑘 )  −  𝑦 )  =  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							fveq2d | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							breq1d | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  <  𝑥  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) )  | 
						
						
							| 18 | 
							
								13 17
							 | 
							anbi12d | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ( ( 𝑓 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							ralbidv | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  <  𝑥 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							rexbidv | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  <  𝑥 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							ralbidv | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  <  𝑥 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) )  | 
						
						
							| 22 | 
							
								10 21
							 | 
							anbi12d | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑦  =  𝐴 )  →  ( ( 𝑦  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  <  𝑥 ) )  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							df-clim | 
							⊢  ⇝   =  { 〈 𝑓 ,  𝑦 〉  ∣  ( 𝑦  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑓 ‘ 𝑘 )  −  𝑦 ) )  <  𝑥 ) ) }  | 
						
						
							| 24 | 
							
								22 23
							 | 
							brabga | 
							⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐴  ∈  V )  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							⊢ ( 𝐹  ∈  𝑉  →  ( 𝐴  ∈  V  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) ) )  | 
						
						
							| 26 | 
							
								1 25
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  V  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) ) )  | 
						
						
							| 27 | 
							
								5 8 26
							 | 
							pm5.21ndd | 
							⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eluzelz | 
							⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  𝑘  ∈  ℤ )  | 
						
						
							| 29 | 
							
								2
							 | 
							eleq1d | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  𝐵  ∈  ℂ ) )  | 
						
						
							| 30 | 
							
								2
							 | 
							fvoveq1d | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  =  ( abs ‘ ( 𝐵  −  𝐴 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							breq1d | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥  ↔  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							anbi12d | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) )  | 
						
						
							| 33 | 
							
								28 32
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							ralbidva | 
							⊢ ( 𝜑  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							rexbidv | 
							⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ralbidv | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							anbi2d | 
							⊢ ( 𝜑  →  ( ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) )  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) ) )  | 
						
						
							| 38 | 
							
								27 37
							 | 
							bitrd | 
							⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵  ∈  ℂ  ∧  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  𝑥 ) ) ) )  |