Metamath Proof Explorer


Theorem clim

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . This means that for any real x , no matter how small, there always exists an integer j such that the absolute difference of any later complex number in the sequence and the limit is less than x . (Contributed by NM, 28-Aug-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypotheses clim.1 ( 𝜑𝐹𝑉 )
clim.3 ( ( 𝜑𝑘 ∈ ℤ ) → ( 𝐹𝑘 ) = 𝐵 )
Assertion clim ( 𝜑 → ( 𝐹𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 clim.1 ( 𝜑𝐹𝑉 )
2 clim.3 ( ( 𝜑𝑘 ∈ ℤ ) → ( 𝐹𝑘 ) = 𝐵 )
3 climrel Rel ⇝
4 3 brrelex2i ( 𝐹𝐴𝐴 ∈ V )
5 4 a1i ( 𝜑 → ( 𝐹𝐴𝐴 ∈ V ) )
6 elex ( 𝐴 ∈ ℂ → 𝐴 ∈ V )
7 6 adantr ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ) → 𝐴 ∈ V )
8 7 a1i ( 𝜑 → ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ) → 𝐴 ∈ V ) )
9 simpr ( ( 𝑓 = 𝐹𝑦 = 𝐴 ) → 𝑦 = 𝐴 )
10 9 eleq1d ( ( 𝑓 = 𝐹𝑦 = 𝐴 ) → ( 𝑦 ∈ ℂ ↔ 𝐴 ∈ ℂ ) )
11 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑘 ) = ( 𝐹𝑘 ) )
12 11 adantr ( ( 𝑓 = 𝐹𝑦 = 𝐴 ) → ( 𝑓𝑘 ) = ( 𝐹𝑘 ) )
13 12 eleq1d ( ( 𝑓 = 𝐹𝑦 = 𝐴 ) → ( ( 𝑓𝑘 ) ∈ ℂ ↔ ( 𝐹𝑘 ) ∈ ℂ ) )
14 oveq12 ( ( ( 𝑓𝑘 ) = ( 𝐹𝑘 ) ∧ 𝑦 = 𝐴 ) → ( ( 𝑓𝑘 ) − 𝑦 ) = ( ( 𝐹𝑘 ) − 𝐴 ) )
15 11 14 sylan ( ( 𝑓 = 𝐹𝑦 = 𝐴 ) → ( ( 𝑓𝑘 ) − 𝑦 ) = ( ( 𝐹𝑘 ) − 𝐴 ) )
16 15 fveq2d ( ( 𝑓 = 𝐹𝑦 = 𝐴 ) → ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) = ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) )
17 16 breq1d ( ( 𝑓 = 𝐹𝑦 = 𝐴 ) → ( ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) )
18 13 17 anbi12d ( ( 𝑓 = 𝐹𝑦 = 𝐴 ) → ( ( ( 𝑓𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 ) ↔ ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ) )
19 18 ralbidv ( ( 𝑓 = 𝐹𝑦 = 𝐴 ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ) )
20 19 rexbidv ( ( 𝑓 = 𝐹𝑦 = 𝐴 ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ) )
21 20 ralbidv ( ( 𝑓 = 𝐹𝑦 = 𝐴 ) → ( ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ) )
22 10 21 anbi12d ( ( 𝑓 = 𝐹𝑦 = 𝐴 ) → ( ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) )
23 df-clim ⇝ = { ⟨ 𝑓 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 ) ) }
24 22 23 brabga ( ( 𝐹𝑉𝐴 ∈ V ) → ( 𝐹𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) )
25 24 ex ( 𝐹𝑉 → ( 𝐴 ∈ V → ( 𝐹𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) )
26 1 25 syl ( 𝜑 → ( 𝐴 ∈ V → ( 𝐹𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) )
27 5 8 26 pm5.21ndd ( 𝜑 → ( 𝐹𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) )
28 eluzelz ( 𝑘 ∈ ( ℤ𝑗 ) → 𝑘 ∈ ℤ )
29 2 eleq1d ( ( 𝜑𝑘 ∈ ℤ ) → ( ( 𝐹𝑘 ) ∈ ℂ ↔ 𝐵 ∈ ℂ ) )
30 2 fvoveq1d ( ( 𝜑𝑘 ∈ ℤ ) → ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) = ( abs ‘ ( 𝐵𝐴 ) ) )
31 30 breq1d ( ( 𝜑𝑘 ∈ ℤ ) → ( ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) )
32 29 31 anbi12d ( ( 𝜑𝑘 ∈ ℤ ) → ( ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
33 28 32 sylan2 ( ( 𝜑𝑘 ∈ ( ℤ𝑗 ) ) → ( ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
34 33 ralbidva ( 𝜑 → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
35 34 rexbidv ( 𝜑 → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
36 35 ralbidv ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) )
37 36 anbi2d ( 𝜑 → ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) ) )
38 27 37 bitrd ( 𝜑 → ( 𝐹𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) ) ) )