Step |
Hyp |
Ref |
Expression |
1 |
|
lmbr3.1 |
⊢ Ⅎ 𝑘 𝐹 |
2 |
|
lmbr3.2 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
2
|
lmbr3v |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑖 ∈ ℤ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑣 ) ) ) ) ) |
4 |
|
eleq2w |
⊢ ( 𝑣 = 𝑢 → ( 𝑃 ∈ 𝑣 ↔ 𝑃 ∈ 𝑢 ) ) |
5 |
|
eleq2w |
⊢ ( 𝑣 = 𝑢 → ( ( 𝐹 ‘ 𝑙 ) ∈ 𝑣 ↔ ( 𝐹 ‘ 𝑙 ) ∈ 𝑢 ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝑣 = 𝑢 → ( ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑣 ) ↔ ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑢 ) ) ) |
7 |
6
|
rexralbidv |
⊢ ( 𝑣 = 𝑢 → ( ∃ 𝑖 ∈ ℤ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑣 ) ↔ ∃ 𝑖 ∈ ℤ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑢 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑗 ) ) |
9 |
8
|
raleqdv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑢 ) ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑢 ) ) ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑙 |
11 |
1
|
nfdm |
⊢ Ⅎ 𝑘 dom 𝐹 |
12 |
10 11
|
nfel |
⊢ Ⅎ 𝑘 𝑙 ∈ dom 𝐹 |
13 |
1 10
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑢 |
15 |
13 14
|
nfel |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) ∈ 𝑢 |
16 |
12 15
|
nfan |
⊢ Ⅎ 𝑘 ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑢 ) |
17 |
|
nfv |
⊢ Ⅎ 𝑙 ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) |
18 |
|
eleq1w |
⊢ ( 𝑙 = 𝑘 → ( 𝑙 ∈ dom 𝐹 ↔ 𝑘 ∈ dom 𝐹 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑘 ) ) |
20 |
19
|
eleq1d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝐹 ‘ 𝑙 ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
21 |
18 20
|
anbi12d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑢 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
22 |
16 17 21
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑢 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
23 |
9 22
|
bitrdi |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑢 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
24 |
23
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ ℤ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑢 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
25 |
7 24
|
bitrdi |
⊢ ( 𝑣 = 𝑢 → ( ∃ 𝑖 ∈ ℤ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑣 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
26 |
4 25
|
imbi12d |
⊢ ( 𝑣 = 𝑢 → ( ( 𝑃 ∈ 𝑣 → ∃ 𝑖 ∈ ℤ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑣 ) ) ↔ ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
27 |
26
|
cbvralvw |
⊢ ( ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑖 ∈ ℤ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑣 ) ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
28 |
27
|
3anbi3i |
⊢ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ∃ 𝑖 ∈ ℤ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝑙 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝑣 ) ) ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
29 |
3 28
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |