Metamath Proof Explorer


Theorem xlimmnfvlem1

Description: Lemma for xlimmnfv : the "only if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimmnfvlem1.m φM
xlimmnfvlem1.z Z=M
xlimmnfvlem1.f φF:Z*
xlimmnfvlem1.c φF*−∞
xlimmnfvlem1.x φX
Assertion xlimmnfvlem1 φjZkjFkX

Proof

Step Hyp Ref Expression
1 xlimmnfvlem1.m φM
2 xlimmnfvlem1.z Z=M
3 xlimmnfvlem1.f φF:Z*
4 xlimmnfvlem1.c φF*−∞
5 xlimmnfvlem1.x φX
6 icomnfordt −∞XordTop
7 6 a1i φ−∞XordTop
8 df-xlim *=tordTop
9 8 breqi F*−∞FtordTop−∞
10 4 9 sylib φFtordTop−∞
11 nfcv _kF
12 letopon ordTopTopOn*
13 12 a1i φordTopTopOn*
14 11 13 lmbr3 φFtordTop−∞F*𝑝𝑚−∞*uordTop−∞ujkjkdomFFku
15 10 14 mpbid φF*𝑝𝑚−∞*uordTop−∞ujkjkdomFFku
16 15 simp3d φuordTop−∞ujkjkdomFFku
17 7 16 jca φ−∞XordTopuordTop−∞ujkjkdomFFku
18 15 simp2d φ−∞*
19 5 rexrd φX*
20 5 mnfltd φ−∞<X
21 lbico1 −∞*X*−∞<X−∞−∞X
22 18 19 20 21 syl3anc φ−∞−∞X
23 eleq2 u=−∞X−∞u−∞−∞X
24 eleq2 u=−∞XFkuFk−∞X
25 24 anbi2d u=−∞XkdomFFkukdomFFk−∞X
26 25 ralbidv u=−∞XkjkdomFFkukjkdomFFk−∞X
27 26 rexbidv u=−∞XjkjkdomFFkujkjkdomFFk−∞X
28 23 27 imbi12d u=−∞X−∞ujkjkdomFFku−∞−∞XjkjkdomFFk−∞X
29 28 rspcva −∞XordTopuordTop−∞ujkjkdomFFku−∞−∞XjkjkdomFFk−∞X
30 17 22 29 sylc φjkjkdomFFk−∞X
31 nfv jφ
32 nfv kφ
33 3 ffdmd φF:domF*
34 33 ffvelcdmda φkdomFFk*
35 34 adantrr φkdomFFk−∞XFk*
36 19 adantr φkdomFFk−∞XX*
37 18 adantr φkdomFFk−∞X−∞*
38 simprr φkdomFFk−∞XFk−∞X
39 37 36 38 icoltubd φkdomFFk−∞XFk<X
40 35 36 39 xrltled φkdomFFk−∞XFkX
41 40 ex φkdomFFk−∞XFkX
42 41 adantr φkjkdomFFk−∞XFkX
43 32 42 ralimdaa φkjkdomFFk−∞XkjFkX
44 43 a1d φjkjkdomFFk−∞XkjFkX
45 31 44 reximdai φjkjkdomFFk−∞XjkjFkX
46 30 45 mpd φjkjFkX
47 2 rexuz3 MjZkjFkXjkjFkX
48 1 47 syl φjZkjFkXjkjFkX
49 46 48 mpbird φjZkjFkX