Metamath Proof Explorer


Theorem xlimmnfvlem2

Description: Lemma for xlimmnf : the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimmnfvlem2.k k φ
xlimmnfvlem2.j j φ
xlimmnfvlem2.m φ M
xlimmnfvlem2.z Z = M
xlimmnfvlem2.f φ F : Z *
xlimmnfvlem2.g φ x j Z k j F k < x
Assertion xlimmnfvlem2 φ F * −∞

Proof

Step Hyp Ref Expression
1 xlimmnfvlem2.k k φ
2 xlimmnfvlem2.j j φ
3 xlimmnfvlem2.m φ M
4 xlimmnfvlem2.z Z = M
5 xlimmnfvlem2.f φ F : Z *
6 xlimmnfvlem2.g φ x j Z k j F k < x
7 letopon ordTop TopOn *
8 7 a1i φ ordTop TopOn *
9 8 elfvexd φ * V
10 cnex V
11 10 a1i φ V
12 4 uzsscn2 Z
13 12 a1i φ Z
14 elpm2r * V V F : Z * Z F * 𝑝𝑚
15 9 11 5 13 14 syl22anc φ F * 𝑝𝑚
16 mnfxr −∞ *
17 16 a1i φ −∞ *
18 mnfnei u ordTop −∞ u x −∞ x u
19 18 adantll φ u ordTop −∞ u x −∞ x u
20 nfv j x
21 2 20 nfan j φ x
22 nfv j −∞ x u
23 21 22 nfan j φ x −∞ x u
24 simprr φ x −∞ x u j Z k j F k < x k j F k < x
25 nfv k x
26 1 25 nfan k φ x
27 nfv k −∞ x u
28 26 27 nfan k φ x −∞ x u
29 nfv k j Z
30 28 29 nfan k φ x −∞ x u j Z
31 4 uztrn2 j Z k j k Z
32 31 3adant1 φ j Z k j k Z
33 5 fdmd φ dom F = Z
34 33 3ad2ant1 φ j Z k j dom F = Z
35 32 34 eleqtrrd φ j Z k j k dom F
36 35 ad5ant134 φ −∞ x u j Z k j F k < x k dom F
37 36 adantl4r φ x −∞ x u j Z k j F k < x k dom F
38 simp-4r φ −∞ x u j Z k j F k < x −∞ x u
39 38 adantl4r φ x −∞ x u j Z k j F k < x −∞ x u
40 16 a1i φ x j Z k j F k < x −∞ *
41 simp-4r φ x j Z k j F k < x x
42 rexr x x *
43 41 42 syl φ x j Z k j F k < x x *
44 simp-4l φ x j Z k j F k < x φ
45 31 ad4ant23 φ x j Z k j F k < x k Z
46 5 ffvelrnda φ k Z F k *
47 44 45 46 syl2anc φ x j Z k j F k < x F k *
48 47 mnfled φ x j Z k j F k < x −∞ F k
49 simpr φ x j Z k j F k < x F k < x
50 40 43 47 48 49 elicod φ x j Z k j F k < x F k −∞ x
51 50 adantl3r φ x −∞ x u j Z k j F k < x F k −∞ x
52 39 51 sseldd φ x −∞ x u j Z k j F k < x F k u
53 37 52 jca φ x −∞ x u j Z k j F k < x k dom F F k u
54 53 ex φ x −∞ x u j Z k j F k < x k dom F F k u
55 30 54 ralimda φ x −∞ x u j Z k j F k < x k j k dom F F k u
56 55 adantrr φ x −∞ x u j Z k j F k < x k j F k < x k j k dom F F k u
57 24 56 mpd φ x −∞ x u j Z k j F k < x k j k dom F F k u
58 57 3impb φ x −∞ x u j Z k j F k < x k j k dom F F k u
59 6 r19.21bi φ x j Z k j F k < x
60 59 adantr φ x −∞ x u j Z k j F k < x
61 23 58 60 reximdd φ x −∞ x u j Z k j k dom F F k u
62 4 rexuz3 M j Z k j k dom F F k u j k j k dom F F k u
63 3 62 syl φ j Z k j k dom F F k u j k j k dom F F k u
64 63 ad2antrr φ x −∞ x u j Z k j k dom F F k u j k j k dom F F k u
65 61 64 mpbid φ x −∞ x u j k j k dom F F k u
66 65 rexlimdva2 φ x −∞ x u j k j k dom F F k u
67 66 ad2antrr φ u ordTop −∞ u x −∞ x u j k j k dom F F k u
68 19 67 mpd φ u ordTop −∞ u j k j k dom F F k u
69 68 ex φ u ordTop −∞ u j k j k dom F F k u
70 69 ralrimiva φ u ordTop −∞ u j k j k dom F F k u
71 15 17 70 3jca φ F * 𝑝𝑚 −∞ * u ordTop −∞ u j k j k dom F F k u
72 nfcv _ k F
73 72 8 lmbr3 φ F t ordTop −∞ F * 𝑝𝑚 −∞ * u ordTop −∞ u j k j k dom F F k u
74 71 73 mpbird φ F t ordTop −∞
75 df-xlim * = t ordTop
76 75 breqi F * −∞ F t ordTop −∞
77 76 a1i φ F * −∞ F t ordTop −∞
78 74 77 mpbird φ F * −∞