| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimmnfvlem2.k | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | xlimmnfvlem2.j | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 3 |  | xlimmnfvlem2.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | xlimmnfvlem2.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 5 |  | xlimmnfvlem2.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 6 |  | xlimmnfvlem2.g | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) | 
						
							| 7 |  | letopon | ⊢ ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ ℝ* ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ ℝ* ) ) | 
						
							| 9 | 8 | elfvexd | ⊢ ( 𝜑  →  ℝ*  ∈  V ) | 
						
							| 10 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 12 | 4 | uzsscn2 | ⊢ 𝑍  ⊆  ℂ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  𝑍  ⊆  ℂ ) | 
						
							| 14 |  | elpm2r | ⊢ ( ( ( ℝ*  ∈  V  ∧  ℂ  ∈  V )  ∧  ( 𝐹 : 𝑍 ⟶ ℝ*  ∧  𝑍  ⊆  ℂ ) )  →  𝐹  ∈  ( ℝ*  ↑pm  ℂ ) ) | 
						
							| 15 | 9 11 5 13 14 | syl22anc | ⊢ ( 𝜑  →  𝐹  ∈  ( ℝ*  ↑pm  ℂ ) ) | 
						
							| 16 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  -∞  ∈  ℝ* ) | 
						
							| 18 |  | mnfnei | ⊢ ( ( 𝑢  ∈  ( ordTop ‘  ≤  )  ∧  -∞  ∈  𝑢 )  →  ∃ 𝑥  ∈  ℝ ( -∞ [,) 𝑥 )  ⊆  𝑢 ) | 
						
							| 19 | 18 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ordTop ‘  ≤  ) )  ∧  -∞  ∈  𝑢 )  →  ∃ 𝑥  ∈  ℝ ( -∞ [,) 𝑥 )  ⊆  𝑢 ) | 
						
							| 20 |  | nfv | ⊢ Ⅎ 𝑗 𝑥  ∈  ℝ | 
						
							| 21 | 2 20 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑥  ∈  ℝ ) | 
						
							| 22 |  | nfv | ⊢ Ⅎ 𝑗 ( -∞ [,) 𝑥 )  ⊆  𝑢 | 
						
							| 23 | 21 22 | nfan | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 ) | 
						
							| 24 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) | 
						
							| 25 |  | nfv | ⊢ Ⅎ 𝑘 𝑥  ∈  ℝ | 
						
							| 26 | 1 25 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑥  ∈  ℝ ) | 
						
							| 27 |  | nfv | ⊢ Ⅎ 𝑘 ( -∞ [,) 𝑥 )  ⊆  𝑢 | 
						
							| 28 | 26 27 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 ) | 
						
							| 29 |  | nfv | ⊢ Ⅎ 𝑘 𝑗  ∈  𝑍 | 
						
							| 30 | 28 29 | nfan | ⊢ Ⅎ 𝑘 ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  ∧  𝑗  ∈  𝑍 ) | 
						
							| 31 | 4 | uztrn2 | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 32 | 31 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 33 | 5 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝑍 ) | 
						
							| 34 | 33 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  dom  𝐹  =  𝑍 ) | 
						
							| 35 | 32 34 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  dom  𝐹 ) | 
						
							| 36 | 35 | ad5ant134 | ⊢ ( ( ( ( ( 𝜑  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  𝑘  ∈  dom  𝐹 ) | 
						
							| 37 | 36 | adantl4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  𝑘  ∈  dom  𝐹 ) | 
						
							| 38 |  | simp-4r | ⊢ ( ( ( ( ( 𝜑  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  ( -∞ [,) 𝑥 )  ⊆  𝑢 ) | 
						
							| 39 | 38 | adantl4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  ( -∞ [,) 𝑥 )  ⊆  𝑢 ) | 
						
							| 40 | 16 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  -∞  ∈  ℝ* ) | 
						
							| 41 |  | simp-4r | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  𝑥  ∈  ℝ ) | 
						
							| 42 |  | rexr | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℝ* ) | 
						
							| 43 | 41 42 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  𝑥  ∈  ℝ* ) | 
						
							| 44 |  | simp-4l | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  𝜑 ) | 
						
							| 45 | 31 | ad4ant23 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  𝑘  ∈  𝑍 ) | 
						
							| 46 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 47 | 44 45 46 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 48 | 47 | mnfled | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  -∞  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  ( 𝐹 ‘ 𝑘 )  <  𝑥 ) | 
						
							| 50 | 40 43 47 48 49 | elicod | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑥 ) ) | 
						
							| 51 | 50 | adantl3r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑥 ) ) | 
						
							| 52 | 39 51 | sseldd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) | 
						
							| 53 | 37 52 | jca | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) | 
						
							| 54 | 53 | ex | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑘 )  <  𝑥  →  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 55 | 30 54 | ralimdaa | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑥  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 56 | 55 | adantrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑥  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 57 | 24 56 | mpd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  ∧  ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) | 
						
							| 58 | 57 | 3impb | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  ∧  𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) | 
						
							| 59 | 6 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) | 
						
							| 61 | 23 58 60 | reximdd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) | 
						
							| 62 | 4 | rexuz3 | ⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 63 | 3 62 | syl | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 64 | 63 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 65 | 61 64 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ( -∞ [,) 𝑥 )  ⊆  𝑢 )  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) | 
						
							| 66 | 65 | rexlimdva2 | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ( -∞ [,) 𝑥 )  ⊆  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 67 | 66 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ordTop ‘  ≤  ) )  ∧  -∞  ∈  𝑢 )  →  ( ∃ 𝑥  ∈  ℝ ( -∞ [,) 𝑥 )  ⊆  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 68 | 19 67 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( ordTop ‘  ≤  ) )  ∧  -∞  ∈  𝑢 )  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) | 
						
							| 69 | 68 | ex | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ordTop ‘  ≤  ) )  →  ( -∞  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 70 | 69 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( -∞  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 71 | 15 17 70 | 3jca | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( ℝ*  ↑pm  ℂ )  ∧  -∞  ∈  ℝ*  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( -∞  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) | 
						
							| 72 |  | nfcv | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 73 | 72 8 | lmbr3 | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) -∞  ↔  ( 𝐹  ∈  ( ℝ*  ↑pm  ℂ )  ∧  -∞  ∈  ℝ*  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( -∞  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) ) | 
						
							| 74 | 71 73 | mpbird | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) -∞ ) | 
						
							| 75 |  | df-xlim | ⊢ ~~>*  =  ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) | 
						
							| 76 | 75 | breqi | ⊢ ( 𝐹 ~~>* -∞  ↔  𝐹 ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) -∞ ) | 
						
							| 77 | 76 | a1i | ⊢ ( 𝜑  →  ( 𝐹 ~~>* -∞  ↔  𝐹 ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) -∞ ) ) | 
						
							| 78 | 74 77 | mpbird | ⊢ ( 𝜑  →  𝐹 ~~>* -∞ ) |