| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimmnfv.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | xlimmnfv.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | xlimmnfv.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 4 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  ∧  𝑥  ∈  ℝ )  →  𝑀  ∈  ℤ ) | 
						
							| 5 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  ∧  𝑥  ∈  ℝ )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 6 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  ∧  𝑥  ∈  ℝ )  →  𝐹 ~~>* -∞ ) | 
						
							| 7 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 8 | 4 2 5 6 7 | xlimmnfvlem1 | ⊢ ( ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 9 | 8 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  →  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑘 ℝ | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑘 𝑍 | 
						
							| 13 |  | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 | 
						
							| 14 | 12 13 | nfrexw | ⊢ Ⅎ 𝑘 ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 | 
						
							| 15 | 11 14 | nfralw | ⊢ Ⅎ 𝑘 ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 | 
						
							| 16 | 10 15 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑗 ℝ | 
						
							| 19 |  | nfre1 | ⊢ Ⅎ 𝑗 ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 | 
						
							| 20 | 18 19 | nfralw | ⊢ Ⅎ 𝑗 ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 | 
						
							| 21 | 17 20 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 22 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 )  →  𝑀  ∈  ℤ ) | 
						
							| 23 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 24 |  | nfv | ⊢ Ⅎ 𝑗 𝑦  ∈  ℝ | 
						
							| 25 | 21 24 | nfan | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 )  ∧  𝑦  ∈  ℝ ) | 
						
							| 26 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 27 | 2 | uztrn2 | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 28 | 27 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 29 | 26 28 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 30 | 29 | ad5ant134 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 31 |  | simp-4r | ⊢ ( ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 32 |  | peano2rem | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑦  −  1 )  ∈  ℝ ) | 
						
							| 33 | 32 | rexrd | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑦  −  1 )  ∈  ℝ* ) | 
						
							| 34 | 31 33 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) )  →  ( 𝑦  −  1 )  ∈  ℝ* ) | 
						
							| 35 |  | rexr | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℝ* ) | 
						
							| 36 | 35 | ad4antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) )  →  𝑦  ∈  ℝ* ) | 
						
							| 37 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) )  →  ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) ) | 
						
							| 38 | 31 | ltm1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) )  →  ( 𝑦  −  1 )  <  𝑦 ) | 
						
							| 39 | 30 34 36 37 38 | xrlelttrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) )  →  ( 𝐹 ‘ 𝑘 )  <  𝑦 ) | 
						
							| 40 | 39 | ex | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 )  →  ( 𝐹 ‘ 𝑘 )  <  𝑦 ) ) | 
						
							| 41 | 40 | ralimdva | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑦 ) ) | 
						
							| 42 | 41 | imp | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑦 ) | 
						
							| 43 | 42 | adantl3r | ⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 )  ∧  𝑦  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑦 ) | 
						
							| 44 | 43 | 3impa | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 )  ∧  𝑦  ∈  ℝ )  ∧  𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑦 ) | 
						
							| 45 | 32 | adantl | ⊢ ( ( ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥  ∧  𝑦  ∈  ℝ )  →  ( 𝑦  −  1 )  ∈  ℝ ) | 
						
							| 46 |  | simpl | ⊢ ( ( ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥  ∧  𝑦  ∈  ℝ )  →  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 47 |  | breq2 | ⊢ ( 𝑥  =  ( 𝑦  −  1 )  →  ( ( 𝐹 ‘ 𝑘 )  ≤  𝑥  ↔  ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) ) ) | 
						
							| 48 | 47 | ralbidv | ⊢ ( 𝑥  =  ( 𝑦  −  1 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) ) ) | 
						
							| 49 | 48 | rexbidv | ⊢ ( 𝑥  =  ( 𝑦  −  1 )  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) ) ) | 
						
							| 50 | 49 | rspcva | ⊢ ( ( ( 𝑦  −  1 )  ∈  ℝ  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) ) | 
						
							| 51 | 45 46 50 | syl2anc | ⊢ ( ( ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥  ∧  𝑦  ∈  ℝ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) ) | 
						
							| 52 | 51 | adantll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 )  ∧  𝑦  ∈  ℝ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  ( 𝑦  −  1 ) ) | 
						
							| 53 | 25 44 52 | reximdd | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 )  ∧  𝑦  ∈  ℝ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑦 ) | 
						
							| 54 | 53 | ralrimiva | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 )  →  ∀ 𝑦  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  <  𝑦 ) | 
						
							| 55 | 16 21 22 2 23 54 | xlimmnfvlem2 | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 )  →  𝐹 ~~>* -∞ ) | 
						
							| 56 | 9 55 | impbida | ⊢ ( 𝜑  →  ( 𝐹 ~~>* -∞  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) ) |