Step |
Hyp |
Ref |
Expression |
1 |
|
xlimmnfv.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
xlimmnfv.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
xlimmnfv.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
4 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) ∧ 𝑥 ∈ ℝ ) → 𝑀 ∈ ℤ ) |
5 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) ∧ 𝑥 ∈ ℝ ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
6 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) ∧ 𝑥 ∈ ℝ ) → 𝐹 ~~>* -∞ ) |
7 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
8 |
4 2 5 6 7
|
xlimmnfvlem1 |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
9 |
8
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
10 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
11 |
|
nfcv |
⊢ Ⅎ 𝑘 ℝ |
12 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑍 |
13 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 |
14 |
12 13
|
nfrex |
⊢ Ⅎ 𝑘 ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 |
15 |
11 14
|
nfralw |
⊢ Ⅎ 𝑘 ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 |
16 |
10 15
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
17 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
18 |
|
nfcv |
⊢ Ⅎ 𝑗 ℝ |
19 |
|
nfre1 |
⊢ Ⅎ 𝑗 ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 |
20 |
18 19
|
nfralw |
⊢ Ⅎ 𝑗 ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 |
21 |
17 20
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
22 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) → 𝑀 ∈ ℤ ) |
23 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
24 |
|
nfv |
⊢ Ⅎ 𝑗 𝑦 ∈ ℝ |
25 |
21 24
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∧ 𝑦 ∈ ℝ ) |
26 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
27 |
2
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
28 |
27
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
29 |
26 28
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
30 |
29
|
ad5ant134 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
31 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) → 𝑦 ∈ ℝ ) |
32 |
|
peano2rem |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 − 1 ) ∈ ℝ ) |
33 |
32
|
rexrd |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 − 1 ) ∈ ℝ* ) |
34 |
31 33
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) → ( 𝑦 − 1 ) ∈ ℝ* ) |
35 |
|
rexr |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
36 |
35
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) → 𝑦 ∈ ℝ* ) |
37 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) |
38 |
31
|
ltm1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) → ( 𝑦 − 1 ) < 𝑦 ) |
39 |
30 34 36 37 38
|
xrlelttrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) → ( 𝐹 ‘ 𝑘 ) < 𝑦 ) |
40 |
39
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) → ( 𝐹 ‘ 𝑘 ) < 𝑦 ) ) |
41 |
40
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) < 𝑦 ) ) |
42 |
41
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) < 𝑦 ) |
43 |
42
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) < 𝑦 ) |
44 |
43
|
3impa |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) < 𝑦 ) |
45 |
32
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 − 1 ) ∈ ℝ ) |
46 |
|
simpl |
⊢ ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
47 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑦 − 1 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) ) |
48 |
47
|
ralbidv |
⊢ ( 𝑥 = ( 𝑦 − 1 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) ) |
49 |
48
|
rexbidv |
⊢ ( 𝑥 = ( 𝑦 − 1 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) ) |
50 |
49
|
rspcva |
⊢ ( ( ( 𝑦 − 1 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) |
51 |
45 46 50
|
syl2anc |
⊢ ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ∧ 𝑦 ∈ ℝ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) |
52 |
51
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑦 − 1 ) ) |
53 |
25 44 52
|
reximdd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) < 𝑦 ) |
54 |
53
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) → ∀ 𝑦 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) < 𝑦 ) |
55 |
16 21 22 2 23 54
|
xlimmnfvlem2 |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) → 𝐹 ~~>* -∞ ) |
56 |
9 55
|
impbida |
⊢ ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |