| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimmnfvlem1.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | xlimmnfvlem1.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | xlimmnfvlem1.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 4 |  | xlimmnfvlem1.c | ⊢ ( 𝜑  →  𝐹 ~~>* -∞ ) | 
						
							| 5 |  | xlimmnfvlem1.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 6 |  | icomnfordt | ⊢ ( -∞ [,) 𝑋 )  ∈  ( ordTop ‘  ≤  ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  ( -∞ [,) 𝑋 )  ∈  ( ordTop ‘  ≤  ) ) | 
						
							| 8 |  | df-xlim | ⊢ ~~>*  =  ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) | 
						
							| 9 | 8 | breqi | ⊢ ( 𝐹 ~~>* -∞  ↔  𝐹 ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) -∞ ) | 
						
							| 10 | 4 9 | sylib | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) -∞ ) | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 12 |  | letopon | ⊢ ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ ℝ* ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ ℝ* ) ) | 
						
							| 14 | 11 13 | lmbr3 | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) -∞  ↔  ( 𝐹  ∈  ( ℝ*  ↑pm  ℂ )  ∧  -∞  ∈  ℝ*  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( -∞  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) ) | 
						
							| 15 | 10 14 | mpbid | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( ℝ*  ↑pm  ℂ )  ∧  -∞  ∈  ℝ*  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( -∞  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) | 
						
							| 16 | 15 | simp3d | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( -∞  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) | 
						
							| 17 | 7 16 | jca | ⊢ ( 𝜑  →  ( ( -∞ [,) 𝑋 )  ∈  ( ordTop ‘  ≤  )  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( -∞  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) ) ) | 
						
							| 18 | 15 | simp2d | ⊢ ( 𝜑  →  -∞  ∈  ℝ* ) | 
						
							| 19 | 5 | rexrd | ⊢ ( 𝜑  →  𝑋  ∈  ℝ* ) | 
						
							| 20 | 5 | mnfltd | ⊢ ( 𝜑  →  -∞  <  𝑋 ) | 
						
							| 21 |  | lbico1 | ⊢ ( ( -∞  ∈  ℝ*  ∧  𝑋  ∈  ℝ*  ∧  -∞  <  𝑋 )  →  -∞  ∈  ( -∞ [,) 𝑋 ) ) | 
						
							| 22 | 18 19 20 21 | syl3anc | ⊢ ( 𝜑  →  -∞  ∈  ( -∞ [,) 𝑋 ) ) | 
						
							| 23 |  | eleq2 | ⊢ ( 𝑢  =  ( -∞ [,) 𝑋 )  →  ( -∞  ∈  𝑢  ↔  -∞  ∈  ( -∞ [,) 𝑋 ) ) ) | 
						
							| 24 |  | eleq2 | ⊢ ( 𝑢  =  ( -∞ [,) 𝑋 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑢  ↔  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) ) ) | 
						
							| 25 | 24 | anbi2d | ⊢ ( 𝑢  =  ( -∞ [,) 𝑋 )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 )  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) ) ) ) | 
						
							| 26 | 25 | ralbidv | ⊢ ( 𝑢  =  ( -∞ [,) 𝑋 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) ) ) ) | 
						
							| 27 | 26 | rexbidv | ⊢ ( 𝑢  =  ( -∞ [,) 𝑋 )  →  ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) ) ) ) | 
						
							| 28 | 23 27 | imbi12d | ⊢ ( 𝑢  =  ( -∞ [,) 𝑋 )  →  ( ( -∞  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) )  ↔  ( -∞  ∈  ( -∞ [,) 𝑋 )  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) ) ) ) ) | 
						
							| 29 | 28 | rspcva | ⊢ ( ( ( -∞ [,) 𝑋 )  ∈  ( ordTop ‘  ≤  )  ∧  ∀ 𝑢  ∈  ( ordTop ‘  ≤  ) ( -∞  ∈  𝑢  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑢 ) ) )  →  ( -∞  ∈  ( -∞ [,) 𝑋 )  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) ) ) ) | 
						
							| 30 | 17 22 29 | sylc | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) ) ) | 
						
							| 31 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 32 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 33 | 3 | ffdmd | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℝ* ) | 
						
							| 34 | 33 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 35 | 34 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 36 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) ) )  →  𝑋  ∈  ℝ* ) | 
						
							| 37 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) ) )  →  -∞  ∈  ℝ* ) | 
						
							| 38 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) ) | 
						
							| 39 | 37 36 38 | icoltubd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) ) )  →  ( 𝐹 ‘ 𝑘 )  <  𝑋 ) | 
						
							| 40 | 35 36 39 | xrltled | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ≤  𝑋 ) | 
						
							| 41 | 40 | ex | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) )  →  ( 𝐹 ‘ 𝑘 )  ≤  𝑋 ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) )  →  ( 𝐹 ‘ 𝑘 )  ≤  𝑋 ) ) | 
						
							| 43 | 32 42 | ralimdaa | ⊢ ( 𝜑  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑋 ) ) | 
						
							| 44 | 43 | a1d | ⊢ ( 𝜑  →  ( 𝑗  ∈  ℤ  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑋 ) ) ) | 
						
							| 45 | 31 44 | reximdai | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( -∞ [,) 𝑋 ) )  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑋 ) ) | 
						
							| 46 | 30 45 | mpd | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑋 ) | 
						
							| 47 | 2 | rexuz3 | ⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑋  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑋 ) ) | 
						
							| 48 | 1 47 | syl | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑋  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑋 ) ) | 
						
							| 49 | 46 48 | mpbird | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑋 ) |