Metamath Proof Explorer


Theorem xlimconst2

Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimconst2.p 𝑘 𝜑
xlimconst2.k 𝑘 𝐹
xlimconst2.z 𝑍 = ( ℤ𝑀 )
xlimconst2.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
xlimconst2.n ( 𝜑𝑁𝑍 )
xlimconst2.a ( 𝜑𝐴 ∈ ℝ* )
xlimconst2.e ( ( 𝜑𝑘 ∈ ( ℤ𝑁 ) ) → ( 𝐹𝑘 ) = 𝐴 )
Assertion xlimconst2 ( 𝜑𝐹 ~~>* 𝐴 )

Proof

Step Hyp Ref Expression
1 xlimconst2.p 𝑘 𝜑
2 xlimconst2.k 𝑘 𝐹
3 xlimconst2.z 𝑍 = ( ℤ𝑀 )
4 xlimconst2.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
5 xlimconst2.n ( 𝜑𝑁𝑍 )
6 xlimconst2.a ( 𝜑𝐴 ∈ ℝ* )
7 xlimconst2.e ( ( 𝜑𝑘 ∈ ( ℤ𝑁 ) ) → ( 𝐹𝑘 ) = 𝐴 )
8 nfcv 𝑘 ( ℤ𝑁 )
9 2 8 nfres 𝑘 ( 𝐹 ↾ ( ℤ𝑁 ) )
10 3 5 eluzelz2d ( 𝜑𝑁 ∈ ℤ )
11 eqid ( ℤ𝑁 ) = ( ℤ𝑁 )
12 4 ffnd ( 𝜑𝐹 Fn 𝑍 )
13 3 5 uzssd2 ( 𝜑 → ( ℤ𝑁 ) ⊆ 𝑍 )
14 12 13 fnssresd ( 𝜑 → ( 𝐹 ↾ ( ℤ𝑁 ) ) Fn ( ℤ𝑁 ) )
15 fvres ( 𝑘 ∈ ( ℤ𝑁 ) → ( ( 𝐹 ↾ ( ℤ𝑁 ) ) ‘ 𝑘 ) = ( 𝐹𝑘 ) )
16 15 adantl ( ( 𝜑𝑘 ∈ ( ℤ𝑁 ) ) → ( ( 𝐹 ↾ ( ℤ𝑁 ) ) ‘ 𝑘 ) = ( 𝐹𝑘 ) )
17 16 7 eqtrd ( ( 𝜑𝑘 ∈ ( ℤ𝑁 ) ) → ( ( 𝐹 ↾ ( ℤ𝑁 ) ) ‘ 𝑘 ) = 𝐴 )
18 1 9 10 11 14 6 17 xlimconst ( 𝜑 → ( 𝐹 ↾ ( ℤ𝑁 ) ) ~~>* 𝐴 )
19 3 4 fuzxrpmcn ( 𝜑𝐹 ∈ ( ℝ*pm ℂ ) )
20 19 10 xlimres ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ𝑁 ) ) ~~>* 𝐴 ) )
21 18 20 mpbird ( 𝜑𝐹 ~~>* 𝐴 )