| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimconst2.p | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | xlimconst2.k | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 3 |  | xlimconst2.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 4 |  | xlimconst2.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 5 |  | xlimconst2.n | ⊢ ( 𝜑  →  𝑁  ∈  𝑍 ) | 
						
							| 6 |  | xlimconst2.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 7 |  | xlimconst2.e | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑘 ( ℤ≥ ‘ 𝑁 ) | 
						
							| 9 | 2 8 | nfres | ⊢ Ⅎ 𝑘 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 10 | 3 5 | eluzelz2d | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 11 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑁 )  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 12 | 4 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝑍 ) | 
						
							| 13 | 3 5 | uzssd2 | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑁 )  ⊆  𝑍 ) | 
						
							| 14 | 12 13 | fnssresd | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑁 ) )  Fn  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 15 |  | fvres | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑁 ) ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑁 ) ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 17 | 16 7 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑁 ) ) ‘ 𝑘 )  =  𝐴 ) | 
						
							| 18 | 1 9 10 11 14 6 17 | xlimconst | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑁 ) ) ~~>* 𝐴 ) | 
						
							| 19 | 3 4 | fuzxrpmcn | ⊢ ( 𝜑  →  𝐹  ∈  ( ℝ*  ↑pm  ℂ ) ) | 
						
							| 20 | 19 10 | xlimres | ⊢ ( 𝜑  →  ( 𝐹 ~~>* 𝐴  ↔  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑁 ) ) ~~>* 𝐴 ) ) | 
						
							| 21 | 18 20 | mpbird | ⊢ ( 𝜑  →  𝐹 ~~>* 𝐴 ) |