Step |
Hyp |
Ref |
Expression |
1 |
|
xlimconst2.p |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
xlimconst2.k |
⊢ Ⅎ 𝑘 𝐹 |
3 |
|
xlimconst2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
xlimconst2.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
5 |
|
xlimconst2.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
6 |
|
xlimconst2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
7 |
|
xlimconst2.e |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ℤ≥ ‘ 𝑁 ) |
9 |
2 8
|
nfres |
⊢ Ⅎ 𝑘 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑁 ) ) |
10 |
3 5
|
eluzelz2d |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
11 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
12 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
13 |
3 5
|
uzssd2 |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ 𝑍 ) |
14 |
12 13
|
fnssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑁 ) ) Fn ( ℤ≥ ‘ 𝑁 ) ) |
15 |
|
fvres |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑁 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑁 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
17 |
16 7
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑁 ) ) ‘ 𝑘 ) = 𝐴 ) |
18 |
1 9 10 11 14 6 17
|
xlimconst |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑁 ) ) ~~>* 𝐴 ) |
19 |
3 4
|
fuzxrpmcn |
⊢ ( 𝜑 → 𝐹 ∈ ( ℝ* ↑pm ℂ ) ) |
20 |
19 10
|
xlimres |
⊢ ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑁 ) ) ~~>* 𝐴 ) ) |
21 |
18 20
|
mpbird |
⊢ ( 𝜑 → 𝐹 ~~>* 𝐴 ) |