Metamath Proof Explorer


Theorem xlimconst2

Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimconst2.p kφ
xlimconst2.k _kF
xlimconst2.z Z=M
xlimconst2.f φF:Z*
xlimconst2.n φNZ
xlimconst2.a φA*
xlimconst2.e φkNFk=A
Assertion xlimconst2 φF*A

Proof

Step Hyp Ref Expression
1 xlimconst2.p kφ
2 xlimconst2.k _kF
3 xlimconst2.z Z=M
4 xlimconst2.f φF:Z*
5 xlimconst2.n φNZ
6 xlimconst2.a φA*
7 xlimconst2.e φkNFk=A
8 nfcv _kN
9 2 8 nfres _kFN
10 3 5 eluzelz2d φN
11 eqid N=N
12 4 ffnd φFFnZ
13 3 5 uzssd2 φNZ
14 12 13 fnssresd φFNFnN
15 fvres kNFNk=Fk
16 15 adantl φkNFNk=Fk
17 16 7 eqtrd φkNFNk=A
18 1 9 10 11 14 6 17 xlimconst φFN*A
19 3 4 fuzxrpmcn φF*𝑝𝑚
20 19 10 xlimres φF*AFN*A
21 18 20 mpbird φF*A