Metamath Proof Explorer


Theorem xlimconst2

Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimconst2.p k φ
xlimconst2.k _ k F
xlimconst2.z Z = M
xlimconst2.f φ F : Z *
xlimconst2.n φ N Z
xlimconst2.a φ A *
xlimconst2.e φ k N F k = A
Assertion xlimconst2 φ F * A

Proof

Step Hyp Ref Expression
1 xlimconst2.p k φ
2 xlimconst2.k _ k F
3 xlimconst2.z Z = M
4 xlimconst2.f φ F : Z *
5 xlimconst2.n φ N Z
6 xlimconst2.a φ A *
7 xlimconst2.e φ k N F k = A
8 nfcv _ k N
9 2 8 nfres _ k F N
10 3 5 eluzelz2d φ N
11 eqid N = N
12 4 ffnd φ F Fn Z
13 3 5 uzssd2 φ N Z
14 12 13 fnssresd φ F N Fn N
15 fvres k N F N k = F k
16 15 adantl φ k N F N k = F k
17 16 7 eqtrd φ k N F N k = A
18 1 9 10 11 14 6 17 xlimconst φ F N * A
19 3 4 fuzxrpmcn φ F * 𝑝𝑚
20 19 10 xlimres φ F * A F N * A
21 18 20 mpbird φ F * A