Metamath Proof Explorer


Theorem xlimpnfvlem1

Description: Lemma for xlimpnfv : the "only if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimpnfvlem1.m φ M
xlimpnfvlem1.z Z = M
xlimpnfvlem1.f φ F : Z *
xlimpnfvlem1.c φ F * +∞
xlimpnfvlem1.x φ X
Assertion xlimpnfvlem1 φ j Z k j X F k

Proof

Step Hyp Ref Expression
1 xlimpnfvlem1.m φ M
2 xlimpnfvlem1.z Z = M
3 xlimpnfvlem1.f φ F : Z *
4 xlimpnfvlem1.c φ F * +∞
5 xlimpnfvlem1.x φ X
6 iocpnfordt X +∞ ordTop
7 6 a1i φ X +∞ ordTop
8 df-xlim * = t ordTop
9 8 breqi F * +∞ F t ordTop +∞
10 4 9 sylib φ F t ordTop +∞
11 nfcv _ k F
12 letopon ordTop TopOn *
13 12 a1i φ ordTop TopOn *
14 11 13 lmbr3 φ F t ordTop +∞ F * 𝑝𝑚 +∞ * u ordTop +∞ u j k j k dom F F k u
15 10 14 mpbid φ F * 𝑝𝑚 +∞ * u ordTop +∞ u j k j k dom F F k u
16 15 simp3d φ u ordTop +∞ u j k j k dom F F k u
17 7 16 jca φ X +∞ ordTop u ordTop +∞ u j k j k dom F F k u
18 5 rexrd φ X *
19 15 simp2d φ +∞ *
20 5 ltpnfd φ X < +∞
21 ubioc1 X * +∞ * X < +∞ +∞ X +∞
22 18 19 20 21 syl3anc φ +∞ X +∞
23 eleq2 u = X +∞ +∞ u +∞ X +∞
24 eleq2 u = X +∞ F k u F k X +∞
25 24 anbi2d u = X +∞ k dom F F k u k dom F F k X +∞
26 25 ralbidv u = X +∞ k j k dom F F k u k j k dom F F k X +∞
27 26 rexbidv u = X +∞ j k j k dom F F k u j k j k dom F F k X +∞
28 23 27 imbi12d u = X +∞ +∞ u j k j k dom F F k u +∞ X +∞ j k j k dom F F k X +∞
29 28 rspcva X +∞ ordTop u ordTop +∞ u j k j k dom F F k u +∞ X +∞ j k j k dom F F k X +∞
30 17 22 29 sylc φ j k j k dom F F k X +∞
31 nfv j φ
32 nfv k φ
33 18 adantr φ k dom F F k X +∞ X *
34 3 ffdmd φ F : dom F *
35 34 ffvelrnda φ k dom F F k *
36 35 adantrr φ k dom F F k X +∞ F k *
37 19 adantr φ k dom F F k X +∞ +∞ *
38 simprr φ k dom F F k X +∞ F k X +∞
39 33 37 38 iocgtlbd φ k dom F F k X +∞ X < F k
40 33 36 39 xrltled φ k dom F F k X +∞ X F k
41 40 ex φ k dom F F k X +∞ X F k
42 41 adantr φ k j k dom F F k X +∞ X F k
43 32 42 ralimda φ k j k dom F F k X +∞ k j X F k
44 43 a1d φ j k j k dom F F k X +∞ k j X F k
45 31 44 reximdai φ j k j k dom F F k X +∞ j k j X F k
46 30 45 mpd φ j k j X F k
47 2 rexuz3 M j Z k j X F k j k j X F k
48 1 47 syl φ j Z k j X F k j k j X F k
49 46 48 mpbird φ j Z k j X F k