Metamath Proof Explorer


Theorem xlimpnfvlem1

Description: Lemma for xlimpnfv : the "only if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimpnfvlem1.m φM
xlimpnfvlem1.z Z=M
xlimpnfvlem1.f φF:Z*
xlimpnfvlem1.c φF*+∞
xlimpnfvlem1.x φX
Assertion xlimpnfvlem1 φjZkjXFk

Proof

Step Hyp Ref Expression
1 xlimpnfvlem1.m φM
2 xlimpnfvlem1.z Z=M
3 xlimpnfvlem1.f φF:Z*
4 xlimpnfvlem1.c φF*+∞
5 xlimpnfvlem1.x φX
6 iocpnfordt X+∞ordTop
7 6 a1i φX+∞ordTop
8 df-xlim *=tordTop
9 8 breqi F*+∞FtordTop+∞
10 4 9 sylib φFtordTop+∞
11 nfcv _kF
12 letopon ordTopTopOn*
13 12 a1i φordTopTopOn*
14 11 13 lmbr3 φFtordTop+∞F*𝑝𝑚+∞*uordTop+∞ujkjkdomFFku
15 10 14 mpbid φF*𝑝𝑚+∞*uordTop+∞ujkjkdomFFku
16 15 simp3d φuordTop+∞ujkjkdomFFku
17 7 16 jca φX+∞ordTopuordTop+∞ujkjkdomFFku
18 5 rexrd φX*
19 15 simp2d φ+∞*
20 5 ltpnfd φX<+∞
21 ubioc1 X*+∞*X<+∞+∞X+∞
22 18 19 20 21 syl3anc φ+∞X+∞
23 eleq2 u=X+∞+∞u+∞X+∞
24 eleq2 u=X+∞FkuFkX+∞
25 24 anbi2d u=X+∞kdomFFkukdomFFkX+∞
26 25 ralbidv u=X+∞kjkdomFFkukjkdomFFkX+∞
27 26 rexbidv u=X+∞jkjkdomFFkujkjkdomFFkX+∞
28 23 27 imbi12d u=X+∞+∞ujkjkdomFFku+∞X+∞jkjkdomFFkX+∞
29 28 rspcva X+∞ordTopuordTop+∞ujkjkdomFFku+∞X+∞jkjkdomFFkX+∞
30 17 22 29 sylc φjkjkdomFFkX+∞
31 nfv jφ
32 nfv kφ
33 18 adantr φkdomFFkX+∞X*
34 3 ffdmd φF:domF*
35 34 ffvelcdmda φkdomFFk*
36 35 adantrr φkdomFFkX+∞Fk*
37 19 adantr φkdomFFkX+∞+∞*
38 simprr φkdomFFkX+∞FkX+∞
39 33 37 38 iocgtlbd φkdomFFkX+∞X<Fk
40 33 36 39 xrltled φkdomFFkX+∞XFk
41 40 ex φkdomFFkX+∞XFk
42 41 adantr φkjkdomFFkX+∞XFk
43 32 42 ralimdaa φkjkdomFFkX+∞kjXFk
44 43 a1d φjkjkdomFFkX+∞kjXFk
45 31 44 reximdai φjkjkdomFFkX+∞jkjXFk
46 30 45 mpd φjkjXFk
47 2 rexuz3 MjZkjXFkjkjXFk
48 1 47 syl φjZkjXFkjkjXFk
49 46 48 mpbird φjZkjXFk