Metamath Proof Explorer


Theorem xlimpnfvlem2

Description: Lemma for xlimpnfv : the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimpnfvlem2.k k φ
xlimpnfvlem2.j j φ
xlimpnfvlem2.m φ M
xlimpnfvlem2.z Z = M
xlimpnfvlem2.f φ F : Z *
xlimpnfvlem2.g φ x j Z k j x < F k
Assertion xlimpnfvlem2 φ F * +∞

Proof

Step Hyp Ref Expression
1 xlimpnfvlem2.k k φ
2 xlimpnfvlem2.j j φ
3 xlimpnfvlem2.m φ M
4 xlimpnfvlem2.z Z = M
5 xlimpnfvlem2.f φ F : Z *
6 xlimpnfvlem2.g φ x j Z k j x < F k
7 letopon ordTop TopOn *
8 7 a1i φ ordTop TopOn *
9 8 elfvexd φ * V
10 cnex V
11 10 a1i φ V
12 4 uzsscn2 Z
13 12 a1i φ Z
14 elpm2r * V V F : Z * Z F * 𝑝𝑚
15 9 11 5 13 14 syl22anc φ F * 𝑝𝑚
16 pnfxr +∞ *
17 16 a1i φ +∞ *
18 pnfnei u ordTop +∞ u x x +∞ u
19 18 adantll φ u ordTop +∞ u x x +∞ u
20 nfv j x
21 2 20 nfan j φ x
22 nfv j x +∞ u
23 21 22 nfan j φ x x +∞ u
24 simprr φ x x +∞ u j Z k j x < F k k j x < F k
25 nfv k x
26 1 25 nfan k φ x
27 nfv k x +∞ u
28 26 27 nfan k φ x x +∞ u
29 nfv k j Z
30 28 29 nfan k φ x x +∞ u j Z
31 4 uztrn2 j Z k j k Z
32 31 3adant1 φ j Z k j k Z
33 5 fdmd φ dom F = Z
34 33 3ad2ant1 φ j Z k j dom F = Z
35 32 34 eleqtrrd φ j Z k j k dom F
36 35 ad5ant134 φ x +∞ u j Z k j x < F k k dom F
37 36 adantl4r φ x x +∞ u j Z k j x < F k k dom F
38 simp-4r φ x +∞ u j Z k j x < F k x +∞ u
39 38 adantl4r φ x x +∞ u j Z k j x < F k x +∞ u
40 simp-4r φ x j Z k j x < F k x
41 rexr x x *
42 40 41 syl φ x j Z k j x < F k x *
43 16 a1i φ x j Z k j x < F k +∞ *
44 simp-4l φ x j Z k j x < F k φ
45 31 ad4ant23 φ x j Z k j x < F k k Z
46 5 ffvelrnda φ k Z F k *
47 44 45 46 syl2anc φ x j Z k j x < F k F k *
48 simpr φ x j Z k j x < F k x < F k
49 5 3ad2ant1 φ j Z k j F : Z *
50 49 32 ffvelrnd φ j Z k j F k *
51 50 pnfged φ j Z k j F k +∞
52 51 ad5ant134 φ x j Z k j x < F k F k +∞
53 42 43 47 48 52 eliocd φ x j Z k j x < F k F k x +∞
54 53 adantl3r φ x x +∞ u j Z k j x < F k F k x +∞
55 39 54 sseldd φ x x +∞ u j Z k j x < F k F k u
56 37 55 jca φ x x +∞ u j Z k j x < F k k dom F F k u
57 56 ex φ x x +∞ u j Z k j x < F k k dom F F k u
58 30 57 ralimda φ x x +∞ u j Z k j x < F k k j k dom F F k u
59 58 adantrr φ x x +∞ u j Z k j x < F k k j x < F k k j k dom F F k u
60 24 59 mpd φ x x +∞ u j Z k j x < F k k j k dom F F k u
61 60 3impb φ x x +∞ u j Z k j x < F k k j k dom F F k u
62 6 r19.21bi φ x j Z k j x < F k
63 62 adantr φ x x +∞ u j Z k j x < F k
64 23 61 63 reximdd φ x x +∞ u j Z k j k dom F F k u
65 4 rexuz3 M j Z k j k dom F F k u j k j k dom F F k u
66 3 65 syl φ j Z k j k dom F F k u j k j k dom F F k u
67 66 ad2antrr φ x x +∞ u j Z k j k dom F F k u j k j k dom F F k u
68 64 67 mpbid φ x x +∞ u j k j k dom F F k u
69 68 rexlimdva2 φ x x +∞ u j k j k dom F F k u
70 69 ad2antrr φ u ordTop +∞ u x x +∞ u j k j k dom F F k u
71 19 70 mpd φ u ordTop +∞ u j k j k dom F F k u
72 71 ex φ u ordTop +∞ u j k j k dom F F k u
73 72 ralrimiva φ u ordTop +∞ u j k j k dom F F k u
74 15 17 73 3jca φ F * 𝑝𝑚 +∞ * u ordTop +∞ u j k j k dom F F k u
75 nfcv _ k F
76 75 8 lmbr3 φ F t ordTop +∞ F * 𝑝𝑚 +∞ * u ordTop +∞ u j k j k dom F F k u
77 74 76 mpbird φ F t ordTop +∞
78 df-xlim * = t ordTop
79 78 breqi F * +∞ F t ordTop +∞
80 79 a1i φ F * +∞ F t ordTop +∞
81 77 80 mpbird φ F * +∞