Metamath Proof Explorer


Theorem xlimpnfvlem2

Description: Lemma for xlimpnfv : the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimpnfvlem2.k kφ
xlimpnfvlem2.j jφ
xlimpnfvlem2.m φM
xlimpnfvlem2.z Z=M
xlimpnfvlem2.f φF:Z*
xlimpnfvlem2.g φxjZkjx<Fk
Assertion xlimpnfvlem2 φF*+∞

Proof

Step Hyp Ref Expression
1 xlimpnfvlem2.k kφ
2 xlimpnfvlem2.j jφ
3 xlimpnfvlem2.m φM
4 xlimpnfvlem2.z Z=M
5 xlimpnfvlem2.f φF:Z*
6 xlimpnfvlem2.g φxjZkjx<Fk
7 letopon ordTopTopOn*
8 7 a1i φordTopTopOn*
9 8 elfvexd φ*V
10 cnex V
11 10 a1i φV
12 4 uzsscn2 Z
13 12 a1i φZ
14 elpm2r *VVF:Z*ZF*𝑝𝑚
15 9 11 5 13 14 syl22anc φF*𝑝𝑚
16 pnfxr +∞*
17 16 a1i φ+∞*
18 pnfnei uordTop+∞uxx+∞u
19 18 adantll φuordTop+∞uxx+∞u
20 nfv jx
21 2 20 nfan jφx
22 nfv jx+∞u
23 21 22 nfan jφxx+∞u
24 simprr φxx+∞ujZkjx<Fkkjx<Fk
25 nfv kx
26 1 25 nfan kφx
27 nfv kx+∞u
28 26 27 nfan kφxx+∞u
29 nfv kjZ
30 28 29 nfan kφxx+∞ujZ
31 4 uztrn2 jZkjkZ
32 31 3adant1 φjZkjkZ
33 5 fdmd φdomF=Z
34 33 3ad2ant1 φjZkjdomF=Z
35 32 34 eleqtrrd φjZkjkdomF
36 35 ad5ant134 φx+∞ujZkjx<FkkdomF
37 36 adantl4r φxx+∞ujZkjx<FkkdomF
38 simp-4r φx+∞ujZkjx<Fkx+∞u
39 38 adantl4r φxx+∞ujZkjx<Fkx+∞u
40 simp-4r φxjZkjx<Fkx
41 rexr xx*
42 40 41 syl φxjZkjx<Fkx*
43 16 a1i φxjZkjx<Fk+∞*
44 simp-4l φxjZkjx<Fkφ
45 31 ad4ant23 φxjZkjx<FkkZ
46 5 ffvelcdmda φkZFk*
47 44 45 46 syl2anc φxjZkjx<FkFk*
48 simpr φxjZkjx<Fkx<Fk
49 5 3ad2ant1 φjZkjF:Z*
50 49 32 ffvelcdmd φjZkjFk*
51 50 pnfged φjZkjFk+∞
52 51 ad5ant134 φxjZkjx<FkFk+∞
53 42 43 47 48 52 eliocd φxjZkjx<FkFkx+∞
54 53 adantl3r φxx+∞ujZkjx<FkFkx+∞
55 39 54 sseldd φxx+∞ujZkjx<FkFku
56 37 55 jca φxx+∞ujZkjx<FkkdomFFku
57 56 ex φxx+∞ujZkjx<FkkdomFFku
58 30 57 ralimdaa φxx+∞ujZkjx<FkkjkdomFFku
59 58 adantrr φxx+∞ujZkjx<Fkkjx<FkkjkdomFFku
60 24 59 mpd φxx+∞ujZkjx<FkkjkdomFFku
61 60 3impb φxx+∞ujZkjx<FkkjkdomFFku
62 6 r19.21bi φxjZkjx<Fk
63 62 adantr φxx+∞ujZkjx<Fk
64 23 61 63 reximdd φxx+∞ujZkjkdomFFku
65 4 rexuz3 MjZkjkdomFFkujkjkdomFFku
66 3 65 syl φjZkjkdomFFkujkjkdomFFku
67 66 ad2antrr φxx+∞ujZkjkdomFFkujkjkdomFFku
68 64 67 mpbid φxx+∞ujkjkdomFFku
69 68 rexlimdva2 φxx+∞ujkjkdomFFku
70 69 ad2antrr φuordTop+∞uxx+∞ujkjkdomFFku
71 19 70 mpd φuordTop+∞ujkjkdomFFku
72 71 ex φuordTop+∞ujkjkdomFFku
73 72 ralrimiva φuordTop+∞ujkjkdomFFku
74 15 17 73 3jca φF*𝑝𝑚+∞*uordTop+∞ujkjkdomFFku
75 nfcv _kF
76 75 8 lmbr3 φFtordTop+∞F*𝑝𝑚+∞*uordTop+∞ujkjkdomFFku
77 74 76 mpbird φFtordTop+∞
78 df-xlim *=tordTop
79 78 breqi F*+∞FtordTop+∞
80 79 a1i φF*+∞FtordTop+∞
81 77 80 mpbird φF*+∞