Step |
Hyp |
Ref |
Expression |
1 |
|
xlimpnfvlem2.k |
|- F/ k ph |
2 |
|
xlimpnfvlem2.j |
|- F/ j ph |
3 |
|
xlimpnfvlem2.m |
|- ( ph -> M e. ZZ ) |
4 |
|
xlimpnfvlem2.z |
|- Z = ( ZZ>= ` M ) |
5 |
|
xlimpnfvlem2.f |
|- ( ph -> F : Z --> RR* ) |
6 |
|
xlimpnfvlem2.g |
|- ( ph -> A. x e. RR E. j e. Z A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) |
7 |
|
letopon |
|- ( ordTop ` <_ ) e. ( TopOn ` RR* ) |
8 |
7
|
a1i |
|- ( ph -> ( ordTop ` <_ ) e. ( TopOn ` RR* ) ) |
9 |
8
|
elfvexd |
|- ( ph -> RR* e. _V ) |
10 |
|
cnex |
|- CC e. _V |
11 |
10
|
a1i |
|- ( ph -> CC e. _V ) |
12 |
4
|
uzsscn2 |
|- Z C_ CC |
13 |
12
|
a1i |
|- ( ph -> Z C_ CC ) |
14 |
|
elpm2r |
|- ( ( ( RR* e. _V /\ CC e. _V ) /\ ( F : Z --> RR* /\ Z C_ CC ) ) -> F e. ( RR* ^pm CC ) ) |
15 |
9 11 5 13 14
|
syl22anc |
|- ( ph -> F e. ( RR* ^pm CC ) ) |
16 |
|
pnfxr |
|- +oo e. RR* |
17 |
16
|
a1i |
|- ( ph -> +oo e. RR* ) |
18 |
|
pnfnei |
|- ( ( u e. ( ordTop ` <_ ) /\ +oo e. u ) -> E. x e. RR ( x (,] +oo ) C_ u ) |
19 |
18
|
adantll |
|- ( ( ( ph /\ u e. ( ordTop ` <_ ) ) /\ +oo e. u ) -> E. x e. RR ( x (,] +oo ) C_ u ) |
20 |
|
nfv |
|- F/ j x e. RR |
21 |
2 20
|
nfan |
|- F/ j ( ph /\ x e. RR ) |
22 |
|
nfv |
|- F/ j ( x (,] +oo ) C_ u |
23 |
21 22
|
nfan |
|- F/ j ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) |
24 |
|
simprr |
|- ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) ) -> A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) |
25 |
|
nfv |
|- F/ k x e. RR |
26 |
1 25
|
nfan |
|- F/ k ( ph /\ x e. RR ) |
27 |
|
nfv |
|- F/ k ( x (,] +oo ) C_ u |
28 |
26 27
|
nfan |
|- F/ k ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) |
29 |
|
nfv |
|- F/ k j e. Z |
30 |
28 29
|
nfan |
|- F/ k ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) |
31 |
4
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
32 |
31
|
3adant1 |
|- ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
33 |
5
|
fdmd |
|- ( ph -> dom F = Z ) |
34 |
33
|
3ad2ant1 |
|- ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> dom F = Z ) |
35 |
32 34
|
eleqtrrd |
|- ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. dom F ) |
36 |
35
|
ad5ant134 |
|- ( ( ( ( ( ph /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> k e. dom F ) |
37 |
36
|
adantl4r |
|- ( ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> k e. dom F ) |
38 |
|
simp-4r |
|- ( ( ( ( ( ph /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( x (,] +oo ) C_ u ) |
39 |
38
|
adantl4r |
|- ( ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( x (,] +oo ) C_ u ) |
40 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> x e. RR ) |
41 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
42 |
40 41
|
syl |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> x e. RR* ) |
43 |
16
|
a1i |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> +oo e. RR* ) |
44 |
|
simp-4l |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ph ) |
45 |
31
|
ad4ant23 |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> k e. Z ) |
46 |
5
|
ffvelrnda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR* ) |
47 |
44 45 46
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( F ` k ) e. RR* ) |
48 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> x < ( F ` k ) ) |
49 |
5
|
3ad2ant1 |
|- ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> F : Z --> RR* ) |
50 |
49 32
|
ffvelrnd |
|- ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. RR* ) |
51 |
50
|
pnfged |
|- ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) <_ +oo ) |
52 |
51
|
ad5ant134 |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( F ` k ) <_ +oo ) |
53 |
42 43 47 48 52
|
eliocd |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( F ` k ) e. ( x (,] +oo ) ) |
54 |
53
|
adantl3r |
|- ( ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( F ` k ) e. ( x (,] +oo ) ) |
55 |
39 54
|
sseldd |
|- ( ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( F ` k ) e. u ) |
56 |
37 55
|
jca |
|- ( ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( k e. dom F /\ ( F ` k ) e. u ) ) |
57 |
56
|
ex |
|- ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( x < ( F ` k ) -> ( k e. dom F /\ ( F ` k ) e. u ) ) ) |
58 |
30 57
|
ralimda |
|- ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) x < ( F ` k ) -> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) |
59 |
58
|
adantrr |
|- ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) ) -> ( A. k e. ( ZZ>= ` j ) x < ( F ` k ) -> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) |
60 |
24 59
|
mpd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) ) -> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) |
61 |
60
|
3impb |
|- ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z /\ A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) -> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) |
62 |
6
|
r19.21bi |
|- ( ( ph /\ x e. RR ) -> E. j e. Z A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) |
63 |
62
|
adantr |
|- ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) -> E. j e. Z A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) |
64 |
23 61 63
|
reximdd |
|- ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) |
65 |
4
|
rexuz3 |
|- ( M e. ZZ -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) |
66 |
3 65
|
syl |
|- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) |
67 |
66
|
ad2antrr |
|- ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) |
68 |
64 67
|
mpbid |
|- ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) |
69 |
68
|
rexlimdva2 |
|- ( ph -> ( E. x e. RR ( x (,] +oo ) C_ u -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) |
70 |
69
|
ad2antrr |
|- ( ( ( ph /\ u e. ( ordTop ` <_ ) ) /\ +oo e. u ) -> ( E. x e. RR ( x (,] +oo ) C_ u -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) |
71 |
19 70
|
mpd |
|- ( ( ( ph /\ u e. ( ordTop ` <_ ) ) /\ +oo e. u ) -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) |
72 |
71
|
ex |
|- ( ( ph /\ u e. ( ordTop ` <_ ) ) -> ( +oo e. u -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) |
73 |
72
|
ralrimiva |
|- ( ph -> A. u e. ( ordTop ` <_ ) ( +oo e. u -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) |
74 |
15 17 73
|
3jca |
|- ( ph -> ( F e. ( RR* ^pm CC ) /\ +oo e. RR* /\ A. u e. ( ordTop ` <_ ) ( +oo e. u -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) ) |
75 |
|
nfcv |
|- F/_ k F |
76 |
75 8
|
lmbr3 |
|- ( ph -> ( F ( ~~>t ` ( ordTop ` <_ ) ) +oo <-> ( F e. ( RR* ^pm CC ) /\ +oo e. RR* /\ A. u e. ( ordTop ` <_ ) ( +oo e. u -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) ) ) |
77 |
74 76
|
mpbird |
|- ( ph -> F ( ~~>t ` ( ordTop ` <_ ) ) +oo ) |
78 |
|
df-xlim |
|- ~~>* = ( ~~>t ` ( ordTop ` <_ ) ) |
79 |
78
|
breqi |
|- ( F ~~>* +oo <-> F ( ~~>t ` ( ordTop ` <_ ) ) +oo ) |
80 |
79
|
a1i |
|- ( ph -> ( F ~~>* +oo <-> F ( ~~>t ` ( ordTop ` <_ ) ) +oo ) ) |
81 |
77 80
|
mpbird |
|- ( ph -> F ~~>* +oo ) |