| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimpnfvlem2.k |  |-  F/ k ph | 
						
							| 2 |  | xlimpnfvlem2.j |  |-  F/ j ph | 
						
							| 3 |  | xlimpnfvlem2.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | xlimpnfvlem2.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 5 |  | xlimpnfvlem2.f |  |-  ( ph -> F : Z --> RR* ) | 
						
							| 6 |  | xlimpnfvlem2.g |  |-  ( ph -> A. x e. RR E. j e. Z A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) | 
						
							| 7 |  | letopon |  |-  ( ordTop ` <_ ) e. ( TopOn ` RR* ) | 
						
							| 8 | 7 | a1i |  |-  ( ph -> ( ordTop ` <_ ) e. ( TopOn ` RR* ) ) | 
						
							| 9 | 8 | elfvexd |  |-  ( ph -> RR* e. _V ) | 
						
							| 10 |  | cnex |  |-  CC e. _V | 
						
							| 11 | 10 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 12 | 4 | uzsscn2 |  |-  Z C_ CC | 
						
							| 13 | 12 | a1i |  |-  ( ph -> Z C_ CC ) | 
						
							| 14 |  | elpm2r |  |-  ( ( ( RR* e. _V /\ CC e. _V ) /\ ( F : Z --> RR* /\ Z C_ CC ) ) -> F e. ( RR* ^pm CC ) ) | 
						
							| 15 | 9 11 5 13 14 | syl22anc |  |-  ( ph -> F e. ( RR* ^pm CC ) ) | 
						
							| 16 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 17 | 16 | a1i |  |-  ( ph -> +oo e. RR* ) | 
						
							| 18 |  | pnfnei |  |-  ( ( u e. ( ordTop ` <_ ) /\ +oo e. u ) -> E. x e. RR ( x (,] +oo ) C_ u ) | 
						
							| 19 | 18 | adantll |  |-  ( ( ( ph /\ u e. ( ordTop ` <_ ) ) /\ +oo e. u ) -> E. x e. RR ( x (,] +oo ) C_ u ) | 
						
							| 20 |  | nfv |  |-  F/ j x e. RR | 
						
							| 21 | 2 20 | nfan |  |-  F/ j ( ph /\ x e. RR ) | 
						
							| 22 |  | nfv |  |-  F/ j ( x (,] +oo ) C_ u | 
						
							| 23 | 21 22 | nfan |  |-  F/ j ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) | 
						
							| 24 |  | simprr |  |-  ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) ) -> A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) | 
						
							| 25 |  | nfv |  |-  F/ k x e. RR | 
						
							| 26 | 1 25 | nfan |  |-  F/ k ( ph /\ x e. RR ) | 
						
							| 27 |  | nfv |  |-  F/ k ( x (,] +oo ) C_ u | 
						
							| 28 | 26 27 | nfan |  |-  F/ k ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) | 
						
							| 29 |  | nfv |  |-  F/ k j e. Z | 
						
							| 30 | 28 29 | nfan |  |-  F/ k ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) | 
						
							| 31 | 4 | uztrn2 |  |-  ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) | 
						
							| 32 | 31 | 3adant1 |  |-  ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) | 
						
							| 33 | 5 | fdmd |  |-  ( ph -> dom F = Z ) | 
						
							| 34 | 33 | 3ad2ant1 |  |-  ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> dom F = Z ) | 
						
							| 35 | 32 34 | eleqtrrd |  |-  ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. dom F ) | 
						
							| 36 | 35 | ad5ant134 |  |-  ( ( ( ( ( ph /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> k e. dom F ) | 
						
							| 37 | 36 | adantl4r |  |-  ( ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> k e. dom F ) | 
						
							| 38 |  | simp-4r |  |-  ( ( ( ( ( ph /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( x (,] +oo ) C_ u ) | 
						
							| 39 | 38 | adantl4r |  |-  ( ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( x (,] +oo ) C_ u ) | 
						
							| 40 |  | simp-4r |  |-  ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> x e. RR ) | 
						
							| 41 |  | rexr |  |-  ( x e. RR -> x e. RR* ) | 
						
							| 42 | 40 41 | syl |  |-  ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> x e. RR* ) | 
						
							| 43 | 16 | a1i |  |-  ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> +oo e. RR* ) | 
						
							| 44 |  | simp-4l |  |-  ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ph ) | 
						
							| 45 | 31 | ad4ant23 |  |-  ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> k e. Z ) | 
						
							| 46 | 5 | ffvelcdmda |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR* ) | 
						
							| 47 | 44 45 46 | syl2anc |  |-  ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( F ` k ) e. RR* ) | 
						
							| 48 |  | simpr |  |-  ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> x < ( F ` k ) ) | 
						
							| 49 | 5 | 3ad2ant1 |  |-  ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> F : Z --> RR* ) | 
						
							| 50 | 49 32 | ffvelcdmd |  |-  ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. RR* ) | 
						
							| 51 | 50 | pnfged |  |-  ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) <_ +oo ) | 
						
							| 52 | 51 | ad5ant134 |  |-  ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( F ` k ) <_ +oo ) | 
						
							| 53 | 42 43 47 48 52 | eliocd |  |-  ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( F ` k ) e. ( x (,] +oo ) ) | 
						
							| 54 | 53 | adantl3r |  |-  ( ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( F ` k ) e. ( x (,] +oo ) ) | 
						
							| 55 | 39 54 | sseldd |  |-  ( ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( F ` k ) e. u ) | 
						
							| 56 | 37 55 | jca |  |-  ( ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x < ( F ` k ) ) -> ( k e. dom F /\ ( F ` k ) e. u ) ) | 
						
							| 57 | 56 | ex |  |-  ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( x < ( F ` k ) -> ( k e. dom F /\ ( F ` k ) e. u ) ) ) | 
						
							| 58 | 30 57 | ralimdaa |  |-  ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) x < ( F ` k ) -> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) | 
						
							| 59 | 58 | adantrr |  |-  ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) ) -> ( A. k e. ( ZZ>= ` j ) x < ( F ` k ) -> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) | 
						
							| 60 | 24 59 | mpd |  |-  ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) ) -> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) | 
						
							| 61 | 60 | 3impb |  |-  ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) /\ j e. Z /\ A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) -> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) | 
						
							| 62 | 6 | r19.21bi |  |-  ( ( ph /\ x e. RR ) -> E. j e. Z A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) -> E. j e. Z A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) | 
						
							| 64 | 23 61 63 | reximdd |  |-  ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) | 
						
							| 65 | 4 | rexuz3 |  |-  ( M e. ZZ -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) | 
						
							| 66 | 3 65 | syl |  |-  ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) | 
						
							| 67 | 66 | ad2antrr |  |-  ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) | 
						
							| 68 | 64 67 | mpbid |  |-  ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ u ) -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) | 
						
							| 69 | 68 | rexlimdva2 |  |-  ( ph -> ( E. x e. RR ( x (,] +oo ) C_ u -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) | 
						
							| 70 | 69 | ad2antrr |  |-  ( ( ( ph /\ u e. ( ordTop ` <_ ) ) /\ +oo e. u ) -> ( E. x e. RR ( x (,] +oo ) C_ u -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) | 
						
							| 71 | 19 70 | mpd |  |-  ( ( ( ph /\ u e. ( ordTop ` <_ ) ) /\ +oo e. u ) -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) | 
						
							| 72 | 71 | ex |  |-  ( ( ph /\ u e. ( ordTop ` <_ ) ) -> ( +oo e. u -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) | 
						
							| 73 | 72 | ralrimiva |  |-  ( ph -> A. u e. ( ordTop ` <_ ) ( +oo e. u -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) | 
						
							| 74 | 15 17 73 | 3jca |  |-  ( ph -> ( F e. ( RR* ^pm CC ) /\ +oo e. RR* /\ A. u e. ( ordTop ` <_ ) ( +oo e. u -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) ) | 
						
							| 75 |  | nfcv |  |-  F/_ k F | 
						
							| 76 | 75 8 | lmbr3 |  |-  ( ph -> ( F ( ~~>t ` ( ordTop ` <_ ) ) +oo <-> ( F e. ( RR* ^pm CC ) /\ +oo e. RR* /\ A. u e. ( ordTop ` <_ ) ( +oo e. u -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. u ) ) ) ) ) | 
						
							| 77 | 74 76 | mpbird |  |-  ( ph -> F ( ~~>t ` ( ordTop ` <_ ) ) +oo ) | 
						
							| 78 |  | df-xlim |  |-  ~~>* = ( ~~>t ` ( ordTop ` <_ ) ) | 
						
							| 79 | 78 | breqi |  |-  ( F ~~>* +oo <-> F ( ~~>t ` ( ordTop ` <_ ) ) +oo ) | 
						
							| 80 | 79 | a1i |  |-  ( ph -> ( F ~~>* +oo <-> F ( ~~>t ` ( ordTop ` <_ ) ) +oo ) ) | 
						
							| 81 | 77 80 | mpbird |  |-  ( ph -> F ~~>* +oo ) |