Step |
Hyp |
Ref |
Expression |
1 |
|
xlimpnfv.m |
|
2 |
|
xlimpnfv.z |
|
3 |
|
xlimpnfv.f |
|
4 |
1
|
ad2antrr |
|
5 |
3
|
ad2antrr |
|
6 |
|
simplr |
|
7 |
|
simpr |
|
8 |
4 2 5 6 7
|
xlimpnfvlem1 |
|
9 |
8
|
ralrimiva |
|
10 |
|
nfv |
|
11 |
|
nfcv |
|
12 |
|
nfcv |
|
13 |
|
nfra1 |
|
14 |
12 13
|
nfrex |
|
15 |
11 14
|
nfralw |
|
16 |
10 15
|
nfan |
|
17 |
|
nfv |
|
18 |
|
nfcv |
|
19 |
|
nfre1 |
|
20 |
18 19
|
nfralw |
|
21 |
17 20
|
nfan |
|
22 |
1
|
adantr |
|
23 |
3
|
adantr |
|
24 |
|
nfv |
|
25 |
21 24
|
nfan |
|
26 |
|
simp-4r |
|
27 |
|
rexr |
|
28 |
26 27
|
syl |
|
29 |
|
peano2re |
|
30 |
29
|
rexrd |
|
31 |
26 30
|
syl |
|
32 |
3
|
3ad2ant1 |
|
33 |
2
|
uztrn2 |
|
34 |
33
|
3adant1 |
|
35 |
32 34
|
ffvelrnd |
|
36 |
35
|
ad5ant134 |
|
37 |
26
|
ltp1d |
|
38 |
|
simpr |
|
39 |
28 31 36 37 38
|
xrltletrd |
|
40 |
39
|
ex |
|
41 |
40
|
ralimdva |
|
42 |
41
|
imp |
|
43 |
42
|
adantl3r |
|
44 |
43
|
3impa |
|
45 |
29
|
adantl |
|
46 |
|
simpl |
|
47 |
|
breq1 |
|
48 |
47
|
ralbidv |
|
49 |
48
|
rexbidv |
|
50 |
49
|
rspcva |
|
51 |
45 46 50
|
syl2anc |
|
52 |
51
|
adantll |
|
53 |
25 44 52
|
reximdd |
|
54 |
53
|
ralrimiva |
|
55 |
16 21 22 2 23 54
|
xlimpnfvlem2 |
|
56 |
9 55
|
impbida |
|