Metamath Proof Explorer


Theorem xlimclim2lem

Description: Lemma for xlimclim2 . Here it is additionally assumed that the sequence will eventually become (and stay) real. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimclim2lem.z Z = M
xlimclim2lem.f φ F : Z *
xlimclim2lem.a φ A
xlimclim2lem.r φ j Z F j : j
Assertion xlimclim2lem φ F * A F A

Proof

Step Hyp Ref Expression
1 xlimclim2lem.z Z = M
2 xlimclim2lem.f φ F : Z *
3 xlimclim2lem.a φ A
4 xlimclim2lem.r φ j Z F j : j
5 1 2 fuzxrpmcn φ F * 𝑝𝑚
6 5 ad2antrr φ j Z F j : j F * 𝑝𝑚
7 1 eluzelz2 j Z j
8 7 ad2antlr φ j Z F j : j j
9 6 8 xlimres φ j Z F j : j F * A F j * A
10 eqid j = j
11 simpr φ j Z F j : j F j : j
12 3 ad2antrr φ j Z F j : j A
13 8 10 11 12 xlimclim φ j Z F j : j F j * A F j A
14 1 fvexi Z V
15 14 a1i φ Z V
16 2 15 fexd φ F V
17 climres j F V F j A F A
18 7 16 17 syl2anr φ j Z F j A F A
19 18 adantr φ j Z F j : j F j A F A
20 9 13 19 3bitrd φ j Z F j : j F * A F A
21 20 4 r19.29a φ F * A F A