Step |
Hyp |
Ref |
Expression |
1 |
|
xlimclim2lem.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
xlimclim2lem.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
3 |
|
xlimclim2lem.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
4 |
|
xlimclim2lem.r |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) |
5 |
1 2
|
fuzxrpmcn |
⊢ ( 𝜑 → 𝐹 ∈ ( ℝ* ↑pm ℂ ) ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → 𝐹 ∈ ( ℝ* ↑pm ℂ ) ) |
7 |
1
|
eluzelz2 |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
8 |
7
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → 𝑗 ∈ ℤ ) |
9 |
6 8
|
xlimres |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ~~>* 𝐴 ) ) |
10 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑗 ) |
11 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) |
12 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → 𝐴 ∈ ℝ ) |
13 |
8 10 11 12
|
xlimclim |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ⇝ 𝐴 ) ) |
14 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
15 |
14
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
16 |
2 15
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
17 |
|
climres |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝐹 ∈ V ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
18 |
7 16 17
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
20 |
9 13 19
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → ( 𝐹 ~~>* 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
21 |
20 4
|
r19.29a |
⊢ ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |