Metamath Proof Explorer


Theorem xlimclim2lem

Description: Lemma for xlimclim2 . Here it is additionally assumed that the sequence will eventually become (and stay) real. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimclim2lem.z 𝑍 = ( ℤ𝑀 )
xlimclim2lem.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
xlimclim2lem.a ( 𝜑𝐴 ∈ ℝ )
xlimclim2lem.r ( 𝜑 → ∃ 𝑗𝑍 ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ )
Assertion xlimclim2lem ( 𝜑 → ( 𝐹 ~~>* 𝐴𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 xlimclim2lem.z 𝑍 = ( ℤ𝑀 )
2 xlimclim2lem.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
3 xlimclim2lem.a ( 𝜑𝐴 ∈ ℝ )
4 xlimclim2lem.r ( 𝜑 → ∃ 𝑗𝑍 ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ )
5 1 2 fuzxrpmcn ( 𝜑𝐹 ∈ ( ℝ*pm ℂ ) )
6 5 ad2antrr ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ ) → 𝐹 ∈ ( ℝ*pm ℂ ) )
7 1 eluzelz2 ( 𝑗𝑍𝑗 ∈ ℤ )
8 7 ad2antlr ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ ) → 𝑗 ∈ ℤ )
9 6 8 xlimres ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ ) → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ𝑗 ) ) ~~>* 𝐴 ) )
10 eqid ( ℤ𝑗 ) = ( ℤ𝑗 )
11 simpr ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ ) → ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ )
12 3 ad2antrr ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ ) → 𝐴 ∈ ℝ )
13 8 10 11 12 xlimclim ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ ) → ( ( 𝐹 ↾ ( ℤ𝑗 ) ) ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ𝑗 ) ) ⇝ 𝐴 ) )
14 1 fvexi 𝑍 ∈ V
15 14 a1i ( 𝜑𝑍 ∈ V )
16 2 15 fexd ( 𝜑𝐹 ∈ V )
17 climres ( ( 𝑗 ∈ ℤ ∧ 𝐹 ∈ V ) → ( ( 𝐹 ↾ ( ℤ𝑗 ) ) ⇝ 𝐴𝐹𝐴 ) )
18 7 16 17 syl2anr ( ( 𝜑𝑗𝑍 ) → ( ( 𝐹 ↾ ( ℤ𝑗 ) ) ⇝ 𝐴𝐹𝐴 ) )
19 18 adantr ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ ) → ( ( 𝐹 ↾ ( ℤ𝑗 ) ) ⇝ 𝐴𝐹𝐴 ) )
20 9 13 19 3bitrd ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ ) → ( 𝐹 ~~>* 𝐴𝐹𝐴 ) )
21 20 4 r19.29a ( 𝜑 → ( 𝐹 ~~>* 𝐴𝐹𝐴 ) )