| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimclim2lem.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | xlimclim2lem.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 3 |  | xlimclim2lem.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | xlimclim2lem.r | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) | 
						
							| 5 | 1 2 | fuzxrpmcn | ⊢ ( 𝜑  →  𝐹  ∈  ( ℝ*  ↑pm  ℂ ) ) | 
						
							| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  𝐹  ∈  ( ℝ*  ↑pm  ℂ ) ) | 
						
							| 7 | 1 | eluzelz2 | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℤ ) | 
						
							| 8 | 7 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  𝑗  ∈  ℤ ) | 
						
							| 9 | 6 8 | xlimres | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  ( 𝐹 ~~>* 𝐴  ↔  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) ~~>* 𝐴 ) ) | 
						
							| 10 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ 𝑗 ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) | 
						
							| 12 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 13 | 8 10 11 12 | xlimclim | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) ~~>* 𝐴  ↔  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) )  ⇝  𝐴 ) ) | 
						
							| 14 | 1 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  𝑍  ∈  V ) | 
						
							| 16 | 2 15 | fexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 17 |  | climres | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝐹  ∈  V )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) )  ⇝  𝐴  ↔  𝐹  ⇝  𝐴 ) ) | 
						
							| 18 | 7 16 17 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) )  ⇝  𝐴  ↔  𝐹  ⇝  𝐴 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) )  ⇝  𝐴  ↔  𝐹  ⇝  𝐴 ) ) | 
						
							| 20 | 9 13 19 | 3bitrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  ( 𝐹 ~~>* 𝐴  ↔  𝐹  ⇝  𝐴 ) ) | 
						
							| 21 | 20 4 | r19.29a | ⊢ ( 𝜑  →  ( 𝐹 ~~>* 𝐴  ↔  𝐹  ⇝  𝐴 ) ) |