Step |
Hyp |
Ref |
Expression |
1 |
|
xlimclim2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
xlimclim2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
xlimclim2.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
4 |
|
xlimclim2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) → 𝐹 ~~>* 𝐴 ) |
6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
7 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) → 𝐴 ∈ ℝ ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) → 𝑀 ∈ ℤ ) |
9 |
8 2 6 7 5
|
xlimxrre |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) → ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) |
10 |
2 6 7 9
|
xlimclim2lem |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) → ( 𝐹 ~~>* 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
11 |
5 10
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) → 𝐹 ⇝ 𝐴 ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 ⇝ 𝐴 ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝐴 ∈ ℝ ) |
15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝑀 ∈ ℤ ) |
16 |
15 2 13 14 12
|
climxrre |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) |
17 |
2 13 14 16
|
xlimclim2lem |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → ( 𝐹 ~~>* 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
18 |
12 17
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 ~~>* 𝐴 ) |
19 |
11 18
|
impbida |
⊢ ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |