Metamath Proof Explorer


Theorem xlimclim2

Description: Given a sequence of extended reals, it converges to a real number A w.r.t. the standard topology on the reals (see climreeq ), if and only if it converges to A w.r.t. to the standard topology on the extended reals. In order for the first part of the statement to even make sense, the sequence will of course eventually become (and stay) real: showing this, is the key step of the proof. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimclim2.m ( 𝜑𝑀 ∈ ℤ )
xlimclim2.z 𝑍 = ( ℤ𝑀 )
xlimclim2.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
xlimclim2.a ( 𝜑𝐴 ∈ ℝ )
Assertion xlimclim2 ( 𝜑 → ( 𝐹 ~~>* 𝐴𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 xlimclim2.m ( 𝜑𝑀 ∈ ℤ )
2 xlimclim2.z 𝑍 = ( ℤ𝑀 )
3 xlimclim2.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
4 xlimclim2.a ( 𝜑𝐴 ∈ ℝ )
5 simpr ( ( 𝜑𝐹 ~~>* 𝐴 ) → 𝐹 ~~>* 𝐴 )
6 3 adantr ( ( 𝜑𝐹 ~~>* 𝐴 ) → 𝐹 : 𝑍 ⟶ ℝ* )
7 4 adantr ( ( 𝜑𝐹 ~~>* 𝐴 ) → 𝐴 ∈ ℝ )
8 1 adantr ( ( 𝜑𝐹 ~~>* 𝐴 ) → 𝑀 ∈ ℤ )
9 8 2 6 7 5 xlimxrre ( ( 𝜑𝐹 ~~>* 𝐴 ) → ∃ 𝑗𝑍 ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ )
10 2 6 7 9 xlimclim2lem ( ( 𝜑𝐹 ~~>* 𝐴 ) → ( 𝐹 ~~>* 𝐴𝐹𝐴 ) )
11 5 10 mpbid ( ( 𝜑𝐹 ~~>* 𝐴 ) → 𝐹𝐴 )
12 simpr ( ( 𝜑𝐹𝐴 ) → 𝐹𝐴 )
13 3 adantr ( ( 𝜑𝐹𝐴 ) → 𝐹 : 𝑍 ⟶ ℝ* )
14 4 adantr ( ( 𝜑𝐹𝐴 ) → 𝐴 ∈ ℝ )
15 1 adantr ( ( 𝜑𝐹𝐴 ) → 𝑀 ∈ ℤ )
16 15 2 13 14 12 climxrre ( ( 𝜑𝐹𝐴 ) → ∃ 𝑗𝑍 ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ )
17 2 13 14 16 xlimclim2lem ( ( 𝜑𝐹𝐴 ) → ( 𝐹 ~~>* 𝐴𝐹𝐴 ) )
18 12 17 mpbird ( ( 𝜑𝐹𝐴 ) → 𝐹 ~~>* 𝐴 )
19 11 18 impbida ( 𝜑 → ( 𝐹 ~~>* 𝐴𝐹𝐴 ) )