| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimclim2.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | xlimclim2.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | xlimclim2.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 4 |  | xlimclim2.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* 𝐴 )  →  𝐹 ~~>* 𝐴 ) | 
						
							| 6 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* 𝐴 )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 7 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* 𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 8 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* 𝐴 )  →  𝑀  ∈  ℤ ) | 
						
							| 9 | 8 2 6 7 5 | xlimxrre | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* 𝐴 )  →  ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) | 
						
							| 10 | 2 6 7 9 | xlimclim2lem | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* 𝐴 )  →  ( 𝐹 ~~>* 𝐴  ↔  𝐹  ⇝  𝐴 ) ) | 
						
							| 11 | 5 10 | mpbid | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* 𝐴 )  →  𝐹  ⇝  𝐴 ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  →  𝐹  ⇝  𝐴 ) | 
						
							| 13 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 15 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  →  𝑀  ∈  ℤ ) | 
						
							| 16 | 15 2 13 14 12 | climxrre | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  →  ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) | 
						
							| 17 | 2 13 14 16 | xlimclim2lem | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  →  ( 𝐹 ~~>* 𝐴  ↔  𝐹  ⇝  𝐴 ) ) | 
						
							| 18 | 12 17 | mpbird | ⊢ ( ( 𝜑  ∧  𝐹  ⇝  𝐴 )  →  𝐹 ~~>* 𝐴 ) | 
						
							| 19 | 11 18 | impbida | ⊢ ( 𝜑  →  ( 𝐹 ~~>* 𝐴  ↔  𝐹  ⇝  𝐴 ) ) |