| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xlimclim2.m |
|- ( ph -> M e. ZZ ) |
| 2 |
|
xlimclim2.z |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
xlimclim2.f |
|- ( ph -> F : Z --> RR* ) |
| 4 |
|
xlimclim2.a |
|- ( ph -> A e. RR ) |
| 5 |
|
simpr |
|- ( ( ph /\ F ~~>* A ) -> F ~~>* A ) |
| 6 |
3
|
adantr |
|- ( ( ph /\ F ~~>* A ) -> F : Z --> RR* ) |
| 7 |
4
|
adantr |
|- ( ( ph /\ F ~~>* A ) -> A e. RR ) |
| 8 |
1
|
adantr |
|- ( ( ph /\ F ~~>* A ) -> M e. ZZ ) |
| 9 |
8 2 6 7 5
|
xlimxrre |
|- ( ( ph /\ F ~~>* A ) -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) |
| 10 |
2 6 7 9
|
xlimclim2lem |
|- ( ( ph /\ F ~~>* A ) -> ( F ~~>* A <-> F ~~> A ) ) |
| 11 |
5 10
|
mpbid |
|- ( ( ph /\ F ~~>* A ) -> F ~~> A ) |
| 12 |
|
simpr |
|- ( ( ph /\ F ~~> A ) -> F ~~> A ) |
| 13 |
3
|
adantr |
|- ( ( ph /\ F ~~> A ) -> F : Z --> RR* ) |
| 14 |
4
|
adantr |
|- ( ( ph /\ F ~~> A ) -> A e. RR ) |
| 15 |
1
|
adantr |
|- ( ( ph /\ F ~~> A ) -> M e. ZZ ) |
| 16 |
15 2 13 14 12
|
climxrre |
|- ( ( ph /\ F ~~> A ) -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) |
| 17 |
2 13 14 16
|
xlimclim2lem |
|- ( ( ph /\ F ~~> A ) -> ( F ~~>* A <-> F ~~> A ) ) |
| 18 |
12 17
|
mpbird |
|- ( ( ph /\ F ~~> A ) -> F ~~>* A ) |
| 19 |
11 18
|
impbida |
|- ( ph -> ( F ~~>* A <-> F ~~> A ) ) |