| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimclim2.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | xlimclim2.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | xlimclim2.f |  |-  ( ph -> F : Z --> RR* ) | 
						
							| 4 |  | xlimclim2.a |  |-  ( ph -> A e. RR ) | 
						
							| 5 |  | simpr |  |-  ( ( ph /\ F ~~>* A ) -> F ~~>* A ) | 
						
							| 6 | 3 | adantr |  |-  ( ( ph /\ F ~~>* A ) -> F : Z --> RR* ) | 
						
							| 7 | 4 | adantr |  |-  ( ( ph /\ F ~~>* A ) -> A e. RR ) | 
						
							| 8 | 1 | adantr |  |-  ( ( ph /\ F ~~>* A ) -> M e. ZZ ) | 
						
							| 9 | 8 2 6 7 5 | xlimxrre |  |-  ( ( ph /\ F ~~>* A ) -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) | 
						
							| 10 | 2 6 7 9 | xlimclim2lem |  |-  ( ( ph /\ F ~~>* A ) -> ( F ~~>* A <-> F ~~> A ) ) | 
						
							| 11 | 5 10 | mpbid |  |-  ( ( ph /\ F ~~>* A ) -> F ~~> A ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ F ~~> A ) -> F ~~> A ) | 
						
							| 13 | 3 | adantr |  |-  ( ( ph /\ F ~~> A ) -> F : Z --> RR* ) | 
						
							| 14 | 4 | adantr |  |-  ( ( ph /\ F ~~> A ) -> A e. RR ) | 
						
							| 15 | 1 | adantr |  |-  ( ( ph /\ F ~~> A ) -> M e. ZZ ) | 
						
							| 16 | 15 2 13 14 12 | climxrre |  |-  ( ( ph /\ F ~~> A ) -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) | 
						
							| 17 | 2 13 14 16 | xlimclim2lem |  |-  ( ( ph /\ F ~~> A ) -> ( F ~~>* A <-> F ~~> A ) ) | 
						
							| 18 | 12 17 | mpbird |  |-  ( ( ph /\ F ~~> A ) -> F ~~>* A ) | 
						
							| 19 | 11 18 | impbida |  |-  ( ph -> ( F ~~>* A <-> F ~~> A ) ) |