Step |
Hyp |
Ref |
Expression |
1 |
|
xlimclim2.m |
|- ( ph -> M e. ZZ ) |
2 |
|
xlimclim2.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
xlimclim2.f |
|- ( ph -> F : Z --> RR* ) |
4 |
|
xlimclim2.a |
|- ( ph -> A e. RR ) |
5 |
|
simpr |
|- ( ( ph /\ F ~~>* A ) -> F ~~>* A ) |
6 |
3
|
adantr |
|- ( ( ph /\ F ~~>* A ) -> F : Z --> RR* ) |
7 |
4
|
adantr |
|- ( ( ph /\ F ~~>* A ) -> A e. RR ) |
8 |
1
|
adantr |
|- ( ( ph /\ F ~~>* A ) -> M e. ZZ ) |
9 |
8 2 6 7 5
|
xlimxrre |
|- ( ( ph /\ F ~~>* A ) -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) |
10 |
2 6 7 9
|
xlimclim2lem |
|- ( ( ph /\ F ~~>* A ) -> ( F ~~>* A <-> F ~~> A ) ) |
11 |
5 10
|
mpbid |
|- ( ( ph /\ F ~~>* A ) -> F ~~> A ) |
12 |
|
simpr |
|- ( ( ph /\ F ~~> A ) -> F ~~> A ) |
13 |
3
|
adantr |
|- ( ( ph /\ F ~~> A ) -> F : Z --> RR* ) |
14 |
4
|
adantr |
|- ( ( ph /\ F ~~> A ) -> A e. RR ) |
15 |
1
|
adantr |
|- ( ( ph /\ F ~~> A ) -> M e. ZZ ) |
16 |
15 2 13 14 12
|
climxrre |
|- ( ( ph /\ F ~~> A ) -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) |
17 |
2 13 14 16
|
xlimclim2lem |
|- ( ( ph /\ F ~~> A ) -> ( F ~~>* A <-> F ~~> A ) ) |
18 |
12 17
|
mpbird |
|- ( ( ph /\ F ~~> A ) -> F ~~>* A ) |
19 |
11 18
|
impbida |
|- ( ph -> ( F ~~>* A <-> F ~~> A ) ) |