Step |
Hyp |
Ref |
Expression |
1 |
|
xlimclim2lem.z |
|- Z = ( ZZ>= ` M ) |
2 |
|
xlimclim2lem.f |
|- ( ph -> F : Z --> RR* ) |
3 |
|
xlimclim2lem.a |
|- ( ph -> A e. RR ) |
4 |
|
xlimclim2lem.r |
|- ( ph -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) |
5 |
1 2
|
fuzxrpmcn |
|- ( ph -> F e. ( RR* ^pm CC ) ) |
6 |
5
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> F e. ( RR* ^pm CC ) ) |
7 |
1
|
eluzelz2 |
|- ( j e. Z -> j e. ZZ ) |
8 |
7
|
ad2antlr |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> j e. ZZ ) |
9 |
6 8
|
xlimres |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F ~~>* A <-> ( F |` ( ZZ>= ` j ) ) ~~>* A ) ) |
10 |
|
eqid |
|- ( ZZ>= ` j ) = ( ZZ>= ` j ) |
11 |
|
simpr |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) |
12 |
3
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> A e. RR ) |
13 |
8 10 11 12
|
xlimclim |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( ( F |` ( ZZ>= ` j ) ) ~~>* A <-> ( F |` ( ZZ>= ` j ) ) ~~> A ) ) |
14 |
1
|
fvexi |
|- Z e. _V |
15 |
14
|
a1i |
|- ( ph -> Z e. _V ) |
16 |
2 15
|
fexd |
|- ( ph -> F e. _V ) |
17 |
|
climres |
|- ( ( j e. ZZ /\ F e. _V ) -> ( ( F |` ( ZZ>= ` j ) ) ~~> A <-> F ~~> A ) ) |
18 |
7 16 17
|
syl2anr |
|- ( ( ph /\ j e. Z ) -> ( ( F |` ( ZZ>= ` j ) ) ~~> A <-> F ~~> A ) ) |
19 |
18
|
adantr |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( ( F |` ( ZZ>= ` j ) ) ~~> A <-> F ~~> A ) ) |
20 |
9 13 19
|
3bitrd |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F ~~>* A <-> F ~~> A ) ) |
21 |
20 4
|
r19.29a |
|- ( ph -> ( F ~~>* A <-> F ~~> A ) ) |