| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimclim2lem.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | xlimclim2lem.f |  |-  ( ph -> F : Z --> RR* ) | 
						
							| 3 |  | xlimclim2lem.a |  |-  ( ph -> A e. RR ) | 
						
							| 4 |  | xlimclim2lem.r |  |-  ( ph -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) | 
						
							| 5 | 1 2 | fuzxrpmcn |  |-  ( ph -> F e. ( RR* ^pm CC ) ) | 
						
							| 6 | 5 | ad2antrr |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> F e. ( RR* ^pm CC ) ) | 
						
							| 7 | 1 | eluzelz2 |  |-  ( j e. Z -> j e. ZZ ) | 
						
							| 8 | 7 | ad2antlr |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> j e. ZZ ) | 
						
							| 9 | 6 8 | xlimres |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F ~~>* A <-> ( F |` ( ZZ>= ` j ) ) ~~>* A ) ) | 
						
							| 10 |  | eqid |  |-  ( ZZ>= ` j ) = ( ZZ>= ` j ) | 
						
							| 11 |  | simpr |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) | 
						
							| 12 | 3 | ad2antrr |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> A e. RR ) | 
						
							| 13 | 8 10 11 12 | xlimclim |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( ( F |` ( ZZ>= ` j ) ) ~~>* A <-> ( F |` ( ZZ>= ` j ) ) ~~> A ) ) | 
						
							| 14 | 1 | fvexi |  |-  Z e. _V | 
						
							| 15 | 14 | a1i |  |-  ( ph -> Z e. _V ) | 
						
							| 16 | 2 15 | fexd |  |-  ( ph -> F e. _V ) | 
						
							| 17 |  | climres |  |-  ( ( j e. ZZ /\ F e. _V ) -> ( ( F |` ( ZZ>= ` j ) ) ~~> A <-> F ~~> A ) ) | 
						
							| 18 | 7 16 17 | syl2anr |  |-  ( ( ph /\ j e. Z ) -> ( ( F |` ( ZZ>= ` j ) ) ~~> A <-> F ~~> A ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( ( F |` ( ZZ>= ` j ) ) ~~> A <-> F ~~> A ) ) | 
						
							| 20 | 9 13 19 | 3bitrd |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F ~~>* A <-> F ~~> A ) ) | 
						
							| 21 | 20 4 | r19.29a |  |-  ( ph -> ( F ~~>* A <-> F ~~> A ) ) |