Metamath Proof Explorer


Theorem xlimclim2

Description: Given a sequence of extended reals, it converges to a real number A w.r.t. the standard topology on the reals (see climreeq ), if and only if it converges to A w.r.t. to the standard topology on the extended reals. In order for the first part of the statement to even make sense, the sequence will of course eventually become (and stay) real: showing this, is the key step of the proof. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimclim2.m φ M
xlimclim2.z Z = M
xlimclim2.f φ F : Z *
xlimclim2.a φ A
Assertion xlimclim2 φ F * A F A

Proof

Step Hyp Ref Expression
1 xlimclim2.m φ M
2 xlimclim2.z Z = M
3 xlimclim2.f φ F : Z *
4 xlimclim2.a φ A
5 simpr φ F * A F * A
6 3 adantr φ F * A F : Z *
7 4 adantr φ F * A A
8 1 adantr φ F * A M
9 8 2 6 7 5 xlimxrre φ F * A j Z F j : j
10 2 6 7 9 xlimclim2lem φ F * A F * A F A
11 5 10 mpbid φ F * A F A
12 simpr φ F A F A
13 3 adantr φ F A F : Z *
14 4 adantr φ F A A
15 1 adantr φ F A M
16 15 2 13 14 12 climxrre φ F A j Z F j : j
17 2 13 14 16 xlimclim2lem φ F A F * A F A
18 12 17 mpbird φ F A F * A
19 11 18 impbida φ F * A F A