Metamath Proof Explorer


Theorem climxrre

Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis F e. dom ~> is probably not enough, since in principle we could have +oo e. CC and -oo e. CC ). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climxrre.m φM
climxrre.z Z=M
climxrre.f φF:Z*
climxrre.a φA
climxrre.c φFA
Assertion climxrre φjZFj:j

Proof

Step Hyp Ref Expression
1 climxrre.m φM
2 climxrre.z Z=M
3 climxrre.f φF:Z*
4 climxrre.a φA
5 climxrre.c φFA
6 1 ad2antrr φ+∞−∞M
7 3 ad2antrr φ+∞−∞F:Z*
8 5 ad2antrr φ+∞−∞FA
9 simpr φ+∞+∞
10 4 recnd φA
11 10 adantr φ+∞A
12 9 11 subcld φ+∞+∞A
13 renepnf AA+∞
14 13 necomd A+∞A
15 4 14 syl φ+∞A
16 15 adantr φ+∞+∞A
17 9 11 16 subne0d φ+∞+∞A0
18 12 17 absrpcld φ+∞+∞A+
19 18 adantr φ+∞−∞+∞A+
20 simpr φ−∞−∞
21 10 adantr φ−∞A
22 20 21 subcld φ−∞−∞A
23 4 adantr φ−∞A
24 renemnf AA−∞
25 24 necomd A−∞A
26 23 25 syl φ−∞−∞A
27 20 21 26 subne0d φ−∞−∞A0
28 22 27 absrpcld φ−∞−∞A+
29 28 adantlr φ+∞−∞−∞A+
30 19 29 ifcld φ+∞−∞if+∞A−∞A+∞A−∞A+
31 19 rpred φ+∞−∞+∞A
32 29 rpred φ+∞−∞−∞A
33 31 32 min1d φ+∞−∞if+∞A−∞A+∞A−∞A+∞A
34 33 adantr φ+∞−∞+∞if+∞A−∞A+∞A−∞A+∞A
35 31 32 min2d φ+∞−∞if+∞A−∞A+∞A−∞A−∞A
36 35 adantr φ+∞−∞−∞if+∞A−∞A+∞A−∞A−∞A
37 6 2 7 8 30 34 36 climxrrelem φ+∞−∞jZFj:j
38 1 ad2antrr φ+∞¬−∞M
39 3 ad2antrr φ+∞¬−∞F:Z*
40 5 ad2antrr φ+∞¬−∞FA
41 18 adantr φ+∞¬−∞+∞A+
42 18 rpred φ+∞+∞A
43 42 leidd φ+∞+∞A+∞A
44 43 ad2antrr φ+∞¬−∞+∞+∞A+∞A
45 pm2.21 ¬−∞−∞+∞A−∞A
46 45 imp ¬−∞−∞+∞A−∞A
47 46 adantll φ+∞¬−∞−∞+∞A−∞A
48 38 2 39 40 41 44 47 climxrrelem φ+∞¬−∞jZFj:j
49 37 48 pm2.61dan φ+∞jZFj:j
50 1 ad2antrr φ¬+∞−∞M
51 3 ad2antrr φ¬+∞−∞F:Z*
52 5 ad2antrr φ¬+∞−∞FA
53 28 adantlr φ¬+∞−∞−∞A+
54 pm2.21 ¬+∞+∞−∞A+∞A
55 54 imp ¬+∞+∞−∞A+∞A
56 55 ad4ant24 φ¬+∞−∞+∞−∞A+∞A
57 28 rpred φ−∞−∞A
58 57 leidd φ−∞−∞A−∞A
59 58 ad4ant13 φ¬+∞−∞−∞−∞A−∞A
60 50 2 51 52 53 56 59 climxrrelem φ¬+∞−∞jZFj:j
61 nfv kφ¬+∞¬−∞
62 nfv kjZ
63 nfra1 kkjFk
64 62 63 nfan kjZkjFk
65 61 64 nfan kφ¬+∞¬−∞jZkjFk
66 simp-4l φ¬+∞¬−∞jZkjFkkjφ
67 2 uztrn2 jZkjkZ
68 67 adantlr jZkjFkkjkZ
69 68 adantll φ¬+∞¬−∞jZkjFkkjkZ
70 simpr φkZkZ
71 3 fdmd φdomF=Z
72 71 adantr φkZdomF=Z
73 70 72 eleqtrrd φkZkdomF
74 66 69 73 syl2anc φ¬+∞¬−∞jZkjFkkjkdomF
75 3 ffvelcdmda φkZFk*
76 66 69 75 syl2anc φ¬+∞¬−∞jZkjFkkjFk*
77 rspa kjFkkjFk
78 77 adantll jZkjFkkjFk
79 78 adantll φ¬+∞¬−∞jZkjFkkjFk
80 simpllr φ¬+∞¬−∞jZkjFkkj¬−∞
81 nelne2 Fk¬−∞Fk−∞
82 79 80 81 syl2anc φ¬+∞¬−∞jZkjFkkjFk−∞
83 simp-4r φ¬+∞¬−∞jZkjFkkj¬+∞
84 nelne2 Fk¬+∞Fk+∞
85 79 83 84 syl2anc φ¬+∞¬−∞jZkjFkkjFk+∞
86 76 82 85 xrred φ¬+∞¬−∞jZkjFkkjFk
87 74 86 jca φ¬+∞¬−∞jZkjFkkjkdomFFk
88 65 87 ralrimia φ¬+∞¬−∞jZkjFkkjkdomFFk
89 3 ffund φFunF
90 ffvresb FunFFj:jkjkdomFFk
91 89 90 syl φFj:jkjkdomFFk
92 91 ad3antrrr φ¬+∞¬−∞jZkjFkFj:jkjkdomFFk
93 88 92 mpbird φ¬+∞¬−∞jZkjFkFj:j
94 r19.26 kjFkFkA<1kjFkkjFkA<1
95 94 simplbi kjFkFkA<1kjFk
96 95 ad2antll φjkjFkFkA<1kjFk
97 breq2 x=1FkA<xFkA<1
98 97 anbi2d x=1FkFkA<xFkFkA<1
99 98 rexralbidv x=1jkjFkFkA<xjkjFkFkA<1
100 2 fvexi ZV
101 100 a1i φZV
102 3 101 fexd φFV
103 eqidd φkFk=Fk
104 102 103 clim φFAAx+jkjFkFkA<x
105 5 104 mpbid φAx+jkjFkFkA<x
106 105 simprd φx+jkjFkFkA<x
107 1rp 1+
108 107 a1i φ1+
109 99 106 108 rspcdva φjkjFkFkA<1
110 96 109 reximddv φjkjFk
111 2 rexuz3 MjZkjFkjkjFk
112 1 111 syl φjZkjFkjkjFk
113 110 112 mpbird φjZkjFk
114 113 ad2antrr φ¬+∞¬−∞jZkjFk
115 93 114 reximddv φ¬+∞¬−∞jZFj:j
116 60 115 pm2.61dan φ¬+∞jZFj:j
117 49 116 pm2.61dan φjZFj:j