Metamath Proof Explorer


Theorem min1d

Description: The minimum of two numbers is less than or equal to the first. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses min1d.1 φA
min1d.2 φB
Assertion min1d φifABABA

Proof

Step Hyp Ref Expression
1 min1d.1 φA
2 min1d.2 φB
3 min1 ABifABABA
4 1 2 3 syl2anc φifABABA