Metamath Proof Explorer


Theorem xlimmnf

Description: A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimmnf.k 𝑘 𝐹
xlimmnf.m ( 𝜑𝑀 ∈ ℤ )
xlimmnf.z 𝑍 = ( ℤ𝑀 )
xlimmnf.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
Assertion xlimmnf ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) )

Proof

Step Hyp Ref Expression
1 xlimmnf.k 𝑘 𝐹
2 xlimmnf.m ( 𝜑𝑀 ∈ ℤ )
3 xlimmnf.z 𝑍 = ( ℤ𝑀 )
4 xlimmnf.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
5 2 3 4 xlimmnfv ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ) )
6 breq2 ( 𝑦 = 𝑥 → ( ( 𝐹𝑙 ) ≤ 𝑦 ↔ ( 𝐹𝑙 ) ≤ 𝑥 ) )
7 6 rexralbidv ( 𝑦 = 𝑥 → ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ) )
8 fveq2 ( 𝑖 = 𝑗 → ( ℤ𝑖 ) = ( ℤ𝑗 ) )
9 8 raleqdv ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∀ 𝑙 ∈ ( ℤ𝑗 ) ( 𝐹𝑙 ) ≤ 𝑥 ) )
10 nfcv 𝑘 𝑙
11 1 10 nffv 𝑘 ( 𝐹𝑙 )
12 nfcv 𝑘
13 nfcv 𝑘 𝑥
14 11 12 13 nfbr 𝑘 ( 𝐹𝑙 ) ≤ 𝑥
15 nfv 𝑙 ( 𝐹𝑘 ) ≤ 𝑥
16 fveq2 ( 𝑙 = 𝑘 → ( 𝐹𝑙 ) = ( 𝐹𝑘 ) )
17 16 breq1d ( 𝑙 = 𝑘 → ( ( 𝐹𝑙 ) ≤ 𝑥 ↔ ( 𝐹𝑘 ) ≤ 𝑥 ) )
18 14 15 17 cbvralw ( ∀ 𝑙 ∈ ( ℤ𝑗 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 )
19 9 18 bitrdi ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) )
20 19 cbvrexvw ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 )
21 7 20 bitrdi ( 𝑦 = 𝑥 → ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) )
22 21 cbvralvw ( ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 )
23 5 22 bitrdi ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) )