Step |
Hyp |
Ref |
Expression |
1 |
|
xlimmnf.k |
⊢ Ⅎ 𝑘 𝐹 |
2 |
|
xlimmnf.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
xlimmnf.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
xlimmnf.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
5 |
2 3 4
|
xlimmnfv |
⊢ ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) |
6 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
7 |
6
|
rexralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑗 ) ) |
9 |
8
|
raleqdv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑙 |
11 |
1 10
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑘 ≤ |
13 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
14 |
11 12 13
|
nfbr |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 |
15 |
|
nfv |
⊢ Ⅎ 𝑙 ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 |
16 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑘 ) ) |
17 |
16
|
breq1d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
18 |
14 15 17
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
19 |
9 18
|
bitrdi |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
20 |
19
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
21 |
7 20
|
bitrdi |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
22 |
21
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
23 |
5 22
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |