| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimmnf.k | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 2 |  | xlimmnf.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | xlimmnf.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 4 |  | xlimmnf.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 5 | 2 3 4 | xlimmnfv | ⊢ ( 𝜑  →  ( 𝐹 ~~>* -∞  ↔  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑦 ) ) | 
						
							| 6 |  | breq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝐹 ‘ 𝑙 )  ≤  𝑦  ↔  ( 𝐹 ‘ 𝑙 )  ≤  𝑥 ) ) | 
						
							| 7 | 6 | rexralbidv | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑦  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑥 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( ℤ≥ ‘ 𝑖 )  =  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 9 | 8 | raleqdv | ⊢ ( 𝑖  =  𝑗  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑥 ) ) | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑘 𝑙 | 
						
							| 11 | 1 10 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑘  ≤ | 
						
							| 13 |  | nfcv | ⊢ Ⅎ 𝑘 𝑥 | 
						
							| 14 | 11 12 13 | nfbr | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 )  ≤  𝑥 | 
						
							| 15 |  | nfv | ⊢ Ⅎ 𝑙 ( 𝐹 ‘ 𝑘 )  ≤  𝑥 | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑙  =  𝑘  →  ( 𝐹 ‘ 𝑙 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 17 | 16 | breq1d | ⊢ ( 𝑙  =  𝑘  →  ( ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 18 | 14 15 17 | cbvralw | ⊢ ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 19 | 9 18 | bitrdi | ⊢ ( 𝑖  =  𝑗  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 20 | 19 | cbvrexvw | ⊢ ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 21 | 7 20 | bitrdi | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑦  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 22 | 21 | cbvralvw | ⊢ ( ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑦  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 23 | 5 22 | bitrdi | ⊢ ( 𝜑  →  ( 𝐹 ~~>* -∞  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) ) |