Metamath Proof Explorer


Theorem xlimpnf

Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimpnf.k 𝑘 𝐹
xlimpnf.m ( 𝜑𝑀 ∈ ℤ )
xlimpnf.z 𝑍 = ( ℤ𝑀 )
xlimpnf.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
Assertion xlimpnf ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) )

Proof

Step Hyp Ref Expression
1 xlimpnf.k 𝑘 𝐹
2 xlimpnf.m ( 𝜑𝑀 ∈ ℤ )
3 xlimpnf.z 𝑍 = ( ℤ𝑀 )
4 xlimpnf.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
5 2 3 4 xlimpnfv ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) 𝑦 ≤ ( 𝐹𝑙 ) ) )
6 breq1 ( 𝑦 = 𝑥 → ( 𝑦 ≤ ( 𝐹𝑙 ) ↔ 𝑥 ≤ ( 𝐹𝑙 ) ) )
7 6 rexralbidv ( 𝑦 = 𝑥 → ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) 𝑦 ≤ ( 𝐹𝑙 ) ↔ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) 𝑥 ≤ ( 𝐹𝑙 ) ) )
8 fveq2 ( 𝑖 = 𝑗 → ( ℤ𝑖 ) = ( ℤ𝑗 ) )
9 8 raleqdv ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) 𝑥 ≤ ( 𝐹𝑙 ) ↔ ∀ 𝑙 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑙 ) ) )
10 nfcv 𝑘 𝑥
11 nfcv 𝑘
12 nfcv 𝑘 𝑙
13 1 12 nffv 𝑘 ( 𝐹𝑙 )
14 10 11 13 nfbr 𝑘 𝑥 ≤ ( 𝐹𝑙 )
15 nfv 𝑙 𝑥 ≤ ( 𝐹𝑘 )
16 fveq2 ( 𝑙 = 𝑘 → ( 𝐹𝑙 ) = ( 𝐹𝑘 ) )
17 16 breq2d ( 𝑙 = 𝑘 → ( 𝑥 ≤ ( 𝐹𝑙 ) ↔ 𝑥 ≤ ( 𝐹𝑘 ) ) )
18 14 15 17 cbvralw ( ∀ 𝑙 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑙 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) )
19 9 18 bitrdi ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) 𝑥 ≤ ( 𝐹𝑙 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) )
20 19 cbvrexvw ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) 𝑥 ≤ ( 𝐹𝑙 ) ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) )
21 7 20 bitrdi ( 𝑦 = 𝑥 → ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) 𝑦 ≤ ( 𝐹𝑙 ) ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) )
22 21 cbvralvw ( ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) 𝑦 ≤ ( 𝐹𝑙 ) ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) )
23 5 22 bitrdi ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) )