Step |
Hyp |
Ref |
Expression |
1 |
|
xlimpnf.k |
⊢ Ⅎ 𝑘 𝐹 |
2 |
|
xlimpnf.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
xlimpnf.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
xlimpnf.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
5 |
2 3 4
|
xlimpnfv |
⊢ ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
6 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
7 |
6
|
rexralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑗 ) ) |
9 |
8
|
raleqdv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
11 |
|
nfcv |
⊢ Ⅎ 𝑘 ≤ |
12 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑙 |
13 |
1 12
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) |
14 |
10 11 13
|
nfbr |
⊢ Ⅎ 𝑘 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) |
15 |
|
nfv |
⊢ Ⅎ 𝑙 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) |
16 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑘 ) ) |
17 |
16
|
breq2d |
⊢ ( 𝑙 = 𝑘 → ( 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
18 |
14 15 17
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
19 |
9 18
|
bitrdi |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
20 |
19
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
21 |
7 20
|
bitrdi |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
22 |
21
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
23 |
5 22
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |