| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xlimmnfmpt.k |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
xlimmnfmpt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
xlimmnfmpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 4 |
|
xlimmnfmpt.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ* ) |
| 5 |
|
xlimmnfmpt.f |
⊢ 𝐹 = ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) |
| 6 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) |
| 7 |
5 6
|
nfcxfr |
⊢ Ⅎ 𝑘 𝐹 |
| 8 |
1 4 5
|
fmptdf |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
| 9 |
7 2 3 8
|
xlimmnf |
⊢ ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) ) |
| 10 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 ∈ 𝑍 |
| 11 |
1 10
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) |
| 12 |
3
|
uztrn2 |
⊢ ( ( 𝑖 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑘 ∈ 𝑍 ) |
| 13 |
12
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑘 ∈ 𝑍 ) |
| 14 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝜑 ) |
| 15 |
14 13 4
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝐵 ∈ ℝ* ) |
| 16 |
5
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝐵 ∈ ℝ* ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
| 17 |
13 15 16
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
| 18 |
17
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ↔ 𝐵 ≤ 𝑦 ) ) |
| 19 |
11 18
|
ralbida |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ) ) |
| 20 |
19
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ↔ ∃ 𝑖 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ) ) |
| 21 |
20
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ↔ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ) ) |
| 22 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑥 ) ) |
| 23 |
22
|
rexralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ↔ ∃ 𝑖 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑥 ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑗 ) ) |
| 25 |
24
|
raleqdv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝐵 ≤ 𝑥 ) ) |
| 26 |
25
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝐵 ≤ 𝑥 ) |
| 27 |
23 26
|
bitrdi |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝐵 ≤ 𝑥 ) ) |
| 28 |
27
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝐵 ≤ 𝑥 ) |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) 𝐵 ≤ 𝑦 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝐵 ≤ 𝑥 ) ) |
| 30 |
9 21 29
|
3bitrd |
⊢ ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝐵 ≤ 𝑥 ) ) |