| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimpnfmpt.k | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | xlimpnfmpt.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | xlimpnfmpt.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 4 |  | xlimpnfmpt.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  ℝ* ) | 
						
							| 5 |  | xlimpnfmpt.f | ⊢ 𝐹  =  ( 𝑘  ∈  𝑍  ↦  𝐵 ) | 
						
							| 6 |  | nfmpt1 | ⊢ Ⅎ 𝑘 ( 𝑘  ∈  𝑍  ↦  𝐵 ) | 
						
							| 7 | 5 6 | nfcxfr | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 8 | 1 4 5 | fmptdf | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 9 | 7 2 3 8 | xlimpnf | ⊢ ( 𝜑  →  ( 𝐹 ~~>* +∞  ↔  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑘 𝑖  ∈  𝑍 | 
						
							| 11 | 1 10 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑖  ∈  𝑍 ) | 
						
							| 12 | 3 | uztrn2 | ⊢ ( ( 𝑖  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 13 | 12 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 14 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  𝜑 ) | 
						
							| 15 | 14 13 4 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 16 | 5 | fvmpt2 | ⊢ ( ( 𝑘  ∈  𝑍  ∧  𝐵  ∈  ℝ* )  →  ( 𝐹 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 17 | 13 15 16 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( 𝐹 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 18 | 17 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( 𝑦  ≤  ( 𝐹 ‘ 𝑘 )  ↔  𝑦  ≤  𝐵 ) ) | 
						
							| 19 | 11 18 | ralbida | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  𝐵 ) ) | 
						
							| 20 | 19 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑘 )  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  𝐵 ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑘 )  ↔  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  𝐵 ) ) | 
						
							| 22 |  | breq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ≤  𝐵  ↔  𝑥  ≤  𝐵 ) ) | 
						
							| 23 | 22 | rexralbidv | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  𝐵  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑥  ≤  𝐵 ) ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( ℤ≥ ‘ 𝑖 )  =  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 25 | 24 | raleqdv | ⊢ ( 𝑖  =  𝑗  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑥  ≤  𝐵  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  𝐵 ) ) | 
						
							| 26 | 25 | cbvrexvw | ⊢ ( ∃ 𝑖  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑥  ≤  𝐵  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  𝐵 ) | 
						
							| 27 | 23 26 | bitrdi | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  𝐵  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  𝐵 ) ) | 
						
							| 28 | 27 | cbvralvw | ⊢ ( ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  𝐵  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  𝐵 ) | 
						
							| 29 | 28 | a1i | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  𝐵  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  𝐵 ) ) | 
						
							| 30 | 9 21 29 | 3bitrd | ⊢ ( 𝜑  →  ( 𝐹 ~~>* +∞  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  𝐵 ) ) |