Metamath Proof Explorer


Theorem xlimpnfmpt

Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimpnfmpt.k 𝑘 𝜑
xlimpnfmpt.m ( 𝜑𝑀 ∈ ℤ )
xlimpnfmpt.z 𝑍 = ( ℤ𝑀 )
xlimpnfmpt.b ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℝ* )
xlimpnfmpt.f 𝐹 = ( 𝑘𝑍𝐵 )
Assertion xlimpnfmpt ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 xlimpnfmpt.k 𝑘 𝜑
2 xlimpnfmpt.m ( 𝜑𝑀 ∈ ℤ )
3 xlimpnfmpt.z 𝑍 = ( ℤ𝑀 )
4 xlimpnfmpt.b ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℝ* )
5 xlimpnfmpt.f 𝐹 = ( 𝑘𝑍𝐵 )
6 nfmpt1 𝑘 ( 𝑘𝑍𝐵 )
7 5 6 nfcxfr 𝑘 𝐹
8 1 4 5 fmptdf ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
9 7 2 3 8 xlimpnf ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑘 ∈ ( ℤ𝑖 ) 𝑦 ≤ ( 𝐹𝑘 ) ) )
10 nfv 𝑘 𝑖𝑍
11 1 10 nfan 𝑘 ( 𝜑𝑖𝑍 )
12 3 uztrn2 ( ( 𝑖𝑍𝑘 ∈ ( ℤ𝑖 ) ) → 𝑘𝑍 )
13 12 adantll ( ( ( 𝜑𝑖𝑍 ) ∧ 𝑘 ∈ ( ℤ𝑖 ) ) → 𝑘𝑍 )
14 simpll ( ( ( 𝜑𝑖𝑍 ) ∧ 𝑘 ∈ ( ℤ𝑖 ) ) → 𝜑 )
15 14 13 4 syl2anc ( ( ( 𝜑𝑖𝑍 ) ∧ 𝑘 ∈ ( ℤ𝑖 ) ) → 𝐵 ∈ ℝ* )
16 5 fvmpt2 ( ( 𝑘𝑍𝐵 ∈ ℝ* ) → ( 𝐹𝑘 ) = 𝐵 )
17 13 15 16 syl2anc ( ( ( 𝜑𝑖𝑍 ) ∧ 𝑘 ∈ ( ℤ𝑖 ) ) → ( 𝐹𝑘 ) = 𝐵 )
18 17 breq2d ( ( ( 𝜑𝑖𝑍 ) ∧ 𝑘 ∈ ( ℤ𝑖 ) ) → ( 𝑦 ≤ ( 𝐹𝑘 ) ↔ 𝑦𝐵 ) )
19 11 18 ralbida ( ( 𝜑𝑖𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ𝑖 ) 𝑦 ≤ ( 𝐹𝑘 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑖 ) 𝑦𝐵 ) )
20 19 rexbidva ( 𝜑 → ( ∃ 𝑖𝑍𝑘 ∈ ( ℤ𝑖 ) 𝑦 ≤ ( 𝐹𝑘 ) ↔ ∃ 𝑖𝑍𝑘 ∈ ( ℤ𝑖 ) 𝑦𝐵 ) )
21 20 ralbidv ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑘 ∈ ( ℤ𝑖 ) 𝑦 ≤ ( 𝐹𝑘 ) ↔ ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑘 ∈ ( ℤ𝑖 ) 𝑦𝐵 ) )
22 breq1 ( 𝑦 = 𝑥 → ( 𝑦𝐵𝑥𝐵 ) )
23 22 rexralbidv ( 𝑦 = 𝑥 → ( ∃ 𝑖𝑍𝑘 ∈ ( ℤ𝑖 ) 𝑦𝐵 ↔ ∃ 𝑖𝑍𝑘 ∈ ( ℤ𝑖 ) 𝑥𝐵 ) )
24 fveq2 ( 𝑖 = 𝑗 → ( ℤ𝑖 ) = ( ℤ𝑗 ) )
25 24 raleqdv ( 𝑖 = 𝑗 → ( ∀ 𝑘 ∈ ( ℤ𝑖 ) 𝑥𝐵 ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥𝐵 ) )
26 25 cbvrexvw ( ∃ 𝑖𝑍𝑘 ∈ ( ℤ𝑖 ) 𝑥𝐵 ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥𝐵 )
27 23 26 bitrdi ( 𝑦 = 𝑥 → ( ∃ 𝑖𝑍𝑘 ∈ ( ℤ𝑖 ) 𝑦𝐵 ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥𝐵 ) )
28 27 cbvralvw ( ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑘 ∈ ( ℤ𝑖 ) 𝑦𝐵 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥𝐵 )
29 28 a1i ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑘 ∈ ( ℤ𝑖 ) 𝑦𝐵 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥𝐵 ) )
30 9 21 29 3bitrd ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥𝐵 ) )