Step |
Hyp |
Ref |
Expression |
1 |
|
climxlim2lem.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
climxlim2lem.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
climxlim2lem.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
4 |
|
climxlim2lem.4 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℂ ) |
5 |
|
climxlim2lem.5 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐹 ⇝ 𝐴 ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝑀 ∈ ℤ ) |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
10 |
7 2 8 9
|
xlimclim2 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( 𝐹 ~~>* 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
11 |
6 10
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐹 ~~>* 𝐴 ) |
12 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
13 |
12
|
anim1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 ) ) |
14 |
13
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ* ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 ) ) |
15 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ* ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
16 |
15
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ* ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
17 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ* ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) ∧ 𝑘 ∈ 𝑍 ) → ∀ 𝑦 ∈ ℝ* ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) |
18 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑘 ) → ( 𝑦 ∈ ℂ ↔ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
19 |
|
neeq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑘 ) → ( 𝑦 ≠ 𝐴 ↔ ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 ) ) |
20 |
18 19
|
anbi12d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑘 ) → ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 ) ) ) |
21 |
|
fvoveq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑘 ) → ( abs ‘ ( 𝑦 − 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
22 |
21
|
breq2d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑘 ) → ( 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ↔ 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) |
23 |
20 22
|
imbi12d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑘 ) → ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ↔ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) ) |
24 |
23
|
rspcva |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ∧ ∀ 𝑦 ∈ ℝ* ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) |
25 |
16 17 24
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ* ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) |
26 |
25
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ* ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) |
27 |
14 26
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ* ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
28 |
27
|
ex |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ* ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) |
29 |
28
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ* ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) → ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) |
30 |
29
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ∀ 𝑦 ∈ ℝ* ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) → ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) |
31 |
|
climcl |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) |
32 |
5 31
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
34 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → ¬ 𝐴 ∈ ℝ ) |
35 |
|
prfi |
⊢ { +∞ , -∞ } ∈ Fin |
36 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → { +∞ , -∞ } ∈ Fin ) |
37 |
|
df-xr |
⊢ ℝ* = ( ℝ ∪ { +∞ , -∞ } ) |
38 |
33 34 36 37
|
cnrefiisp |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℝ* ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴 ) → 𝑥 ≤ ( abs ‘ ( 𝑦 − 𝐴 ) ) ) ) |
39 |
30 38
|
reximddv3 |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) |
40 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) |
41 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
42 |
40 41
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) |
43 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 |
44 |
42 43
|
nfan |
⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) ∧ 𝑗 ∈ 𝑍 ) |
45 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 |
46 |
44 45
|
nfan |
⊢ Ⅎ 𝑘 ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
47 |
|
simpll |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) |
48 |
2
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
49 |
48
|
adantll |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
50 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) |
51 |
47 49 50
|
syl2anc |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) |
52 |
|
neqne |
⊢ ( ¬ ( 𝐹 ‘ 𝑘 ) = 𝐴 → ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 ) |
53 |
51 52
|
impel |
⊢ ( ( ( ( ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ¬ ( 𝐹 ‘ 𝑘 ) = 𝐴 ) → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
54 |
53
|
ad5ant2345 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ¬ ( 𝐹 ‘ 𝑘 ) = 𝐴 ) → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
55 |
54
|
adantllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ¬ ( 𝐹 ‘ 𝑘 ) = 𝐴 ) → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
56 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
57 |
56
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
58 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐹 : 𝑍 ⟶ ℂ ) |
59 |
48
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
60 |
58 59
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
61 |
60
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
62 |
32
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐴 ∈ ℂ ) |
63 |
61 62
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ℂ ) |
64 |
63
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ ℝ ) |
65 |
64
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ ℝ ) |
66 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
67 |
66
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 ∈ ℝ+ ) |
68 |
67
|
rpred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 ∈ ℝ ) |
69 |
65 68
|
ltnled |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ↔ ¬ 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) |
70 |
57 69
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ¬ 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
71 |
70
|
adantl3r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ¬ 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
72 |
71
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ¬ ( 𝐹 ‘ 𝑘 ) = 𝐴 ) → ¬ 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
73 |
55 72
|
condan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
74 |
46 73
|
ralrimia |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
75 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐹 |
76 |
75 1 2 4
|
climuz |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
77 |
5 76
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
78 |
77
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
79 |
78
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
80 |
79
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
81 |
74 80
|
reximddv3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
82 |
81
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ≠ 𝐴 → 𝑥 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
83 |
39 82
|
rexlimddv2 |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
84 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) |
85 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 |
86 |
84 85
|
nfan |
⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
87 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
88 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) → 𝑗 ∈ 𝑍 ) |
89 |
2
|
uzid3 |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
90 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
91 |
90
|
eqeq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) = 𝐴 ↔ ( 𝐹 ‘ 𝑗 ) = 𝐴 ) ) |
92 |
91
|
rspcva |
⊢ ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) |
93 |
89 92
|
sylan |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) |
94 |
93
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) |
95 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
96 |
95
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
97 |
94 96
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) → 𝐴 ∈ ℝ* ) |
98 |
97
|
ad4ant134 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) → 𝐴 ∈ ℝ* ) |
99 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
100 |
99
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
101 |
86 75 2 87 88 98 100
|
xlimconst2 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) = 𝐴 ) → 𝐹 ~~>* 𝐴 ) |
102 |
83 101
|
rexlimddv2 |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ ) → 𝐹 ~~>* 𝐴 ) |
103 |
11 102
|
pm2.61dan |
⊢ ( 𝜑 → 𝐹 ~~>* 𝐴 ) |