| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climxlim2lem.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | climxlim2lem.2 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | climxlim2lem.3 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 4 |  | climxlim2lem.4 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℂ ) | 
						
							| 5 |  | climxlim2lem.5 | ⊢ ( 𝜑  →  𝐹  ⇝  𝐴 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝐹  ⇝  𝐴 ) | 
						
							| 7 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝑀  ∈  ℤ ) | 
						
							| 8 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 10 | 7 2 8 9 | xlimclim2 | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  ( 𝐹 ~~>* 𝐴  ↔  𝐹  ⇝  𝐴 ) ) | 
						
							| 11 | 6 10 | mpbird | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝐹 ~~>* 𝐴 ) | 
						
							| 12 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 13 | 12 | anim1i | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  ( 𝐹 ‘ 𝑘 )  ≠  𝐴 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑘 )  ≠  𝐴 ) ) | 
						
							| 14 | 13 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ* ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) )  ∧  𝑘  ∈  𝑍 )  ∧  ( 𝐹 ‘ 𝑘 )  ≠  𝐴 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑘 )  ≠  𝐴 ) ) | 
						
							| 15 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ* ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 16 | 15 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ* ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) )  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 17 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ* ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) )  ∧  𝑘  ∈  𝑍 )  →  ∀ 𝑦  ∈  ℝ* ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) ) | 
						
							| 18 |  | eleq1 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑘 )  →  ( 𝑦  ∈  ℂ  ↔  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) ) | 
						
							| 19 |  | neeq1 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑘 )  →  ( 𝑦  ≠  𝐴  ↔  ( 𝐹 ‘ 𝑘 )  ≠  𝐴 ) ) | 
						
							| 20 | 18 19 | anbi12d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑘 )  →  ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑘 )  ≠  𝐴 ) ) ) | 
						
							| 21 |  | fvoveq1 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑘 )  →  ( abs ‘ ( 𝑦  −  𝐴 ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 22 | 21 | breq2d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑘 )  →  ( 𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) )  ↔  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) ) | 
						
							| 23 | 20 22 | imbi12d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑘 )  →  ( ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) )  ↔  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑘 )  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) ) ) | 
						
							| 24 | 23 | rspcva | ⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ*  ∧  ∀ 𝑦  ∈  ℝ* ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑘 )  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) ) | 
						
							| 25 | 16 17 24 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ* ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) )  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑘 )  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ* ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) )  ∧  𝑘  ∈  𝑍 )  ∧  ( 𝐹 ‘ 𝑘 )  ≠  𝐴 )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑘 )  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) ) | 
						
							| 27 | 14 26 | mpd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ* ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) )  ∧  𝑘  ∈  𝑍 )  ∧  ( 𝐹 ‘ 𝑘 )  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 28 | 27 | ex | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ* ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) )  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) ) | 
						
							| 29 | 28 | ralrimiva | ⊢ ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ* ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) )  →  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) ) | 
						
							| 30 | 29 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  ∧  𝑥  ∈  ℝ+ )  ∧  ∀ 𝑦  ∈  ℝ* ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) )  →  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) ) | 
						
							| 31 |  | climcl | ⊢ ( 𝐹  ⇝  𝐴  →  𝐴  ∈  ℂ ) | 
						
							| 32 | 5 31 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  →  𝐴  ∈  ℂ ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  →  ¬  𝐴  ∈  ℝ ) | 
						
							| 35 |  | prfi | ⊢ { +∞ ,  -∞ }  ∈  Fin | 
						
							| 36 | 35 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  →  { +∞ ,  -∞ }  ∈  Fin ) | 
						
							| 37 |  | df-xr | ⊢ ℝ*  =  ( ℝ  ∪  { +∞ ,  -∞ } ) | 
						
							| 38 | 33 34 36 37 | cnrefiisp | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑦  ∈  ℝ* ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  𝐴 )  →  𝑥  ≤  ( abs ‘ ( 𝑦  −  𝐴 ) ) ) ) | 
						
							| 39 | 30 38 | reximddv3 | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) ) | 
						
							| 40 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑥  ∈  ℝ+ ) | 
						
							| 41 |  | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 42 | 40 41 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) ) | 
						
							| 43 |  | nfv | ⊢ Ⅎ 𝑘 𝑗  ∈  𝑍 | 
						
							| 44 | 42 43 | nfan | ⊢ Ⅎ 𝑘 ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) )  ∧  𝑗  ∈  𝑍 ) | 
						
							| 45 |  | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 | 
						
							| 46 | 44 45 | nfan | ⊢ Ⅎ 𝑘 ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) | 
						
							| 47 |  | simpll | ⊢ ( ( ( ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) ) | 
						
							| 48 | 2 | uztrn2 | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 49 | 48 | adantll | ⊢ ( ( ( ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 50 |  | rspa | ⊢ ( ( ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) )  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) ) | 
						
							| 51 | 47 49 50 | syl2anc | ⊢ ( ( ( ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) ) | 
						
							| 52 |  | neqne | ⊢ ( ¬  ( 𝐹 ‘ 𝑘 )  =  𝐴  →  ( 𝐹 ‘ 𝑘 )  ≠  𝐴 ) | 
						
							| 53 | 51 52 | impel | ⊢ ( ( ( ( ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ¬  ( 𝐹 ‘ 𝑘 )  =  𝐴 )  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 54 | 53 | ad5ant2345 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ¬  ( 𝐹 ‘ 𝑘 )  =  𝐴 )  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 55 | 54 | adantllr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ¬  ( 𝐹 ‘ 𝑘 )  =  𝐴 )  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 56 |  | rspa | ⊢ ( ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) | 
						
							| 57 | 56 | adantll | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) | 
						
							| 58 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝐹 : 𝑍 ⟶ ℂ ) | 
						
							| 59 | 48 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 60 | 58 59 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 61 | 60 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 62 | 32 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 63 | 61 62 | subcld | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 )  ∈  ℂ ) | 
						
							| 64 | 63 | abscld | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  ∈  ℝ ) | 
						
							| 65 | 64 | adantl3r | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  ∈  ℝ ) | 
						
							| 66 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 67 | 66 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 68 | 67 | rpred | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 69 | 65 68 | ltnled | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥  ↔  ¬  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) ) | 
						
							| 70 | 57 69 | mpbid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ¬  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 71 | 70 | adantl3r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ¬  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  ¬  ( 𝐹 ‘ 𝑘 )  =  𝐴 )  →  ¬  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 73 | 55 72 | condan | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 74 | 46 73 | ralrimia | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 75 |  | nfcv | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 76 | 75 1 2 4 | climuz | ⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 77 | 5 76 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) | 
						
							| 78 | 77 | simprd | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) | 
						
							| 79 | 78 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) | 
						
							| 81 | 74 80 | reximddv3 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 82 | 81 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  ∧  𝑥  ∈  ℝ+ )  ∧  ∀ 𝑘  ∈  𝑍 ( ( 𝐹 ‘ 𝑘 )  ≠  𝐴  →  𝑥  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 83 | 39 82 | rexlimddv2 | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 84 |  | nfv | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  ∧  𝑗  ∈  𝑍 ) | 
						
							| 85 |  | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 | 
						
							| 86 | 84 85 | nfan | ⊢ Ⅎ 𝑘 ( ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 87 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 88 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 )  →  𝑗  ∈  𝑍 ) | 
						
							| 89 | 2 | uzid3 | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 90 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 91 | 90 | eqeq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐹 ‘ 𝑘 )  =  𝐴  ↔  ( 𝐹 ‘ 𝑗 )  =  𝐴 ) ) | 
						
							| 92 | 91 | rspcva | ⊢ ( ( 𝑗  ∈  ( ℤ≥ ‘ 𝑗 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 )  →  ( 𝐹 ‘ 𝑗 )  =  𝐴 ) | 
						
							| 93 | 89 92 | sylan | ⊢ ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 )  →  ( 𝐹 ‘ 𝑗 )  =  𝐴 ) | 
						
							| 94 | 93 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 )  →  ( 𝐹 ‘ 𝑗 )  =  𝐴 ) | 
						
							| 95 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 96 | 95 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 97 | 94 96 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 )  →  𝐴  ∈  ℝ* ) | 
						
							| 98 | 97 | ad4ant134 | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 )  →  𝐴  ∈  ℝ* ) | 
						
							| 99 |  | rspa | ⊢ ( ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 100 | 99 | adantll | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 101 | 86 75 2 87 88 98 100 | xlimconst2 | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  𝐴 )  →  𝐹 ~~>* 𝐴 ) | 
						
							| 102 | 83 101 | rexlimddv2 | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ )  →  𝐹 ~~>* 𝐴 ) | 
						
							| 103 | 11 102 | pm2.61dan | ⊢ ( 𝜑  →  𝐹 ~~>* 𝐴 ) |