Metamath Proof Explorer
Description: Restricted existential elimination rule of natural deduction.
(Contributed by Glauco Siliprandi, 5-Feb-2022)
|
|
Ref |
Expression |
|
Hypotheses |
rexlimddv2.1 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) |
|
|
rexlimddv2.2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝜒 ) |
|
Assertion |
rexlimddv2 |
⊢ ( 𝜑 → 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rexlimddv2.1 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) |
2 |
|
rexlimddv2.2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝜒 ) |
3 |
2
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → 𝜒 ) |
4 |
1 3
|
rexlimddv |
⊢ ( 𝜑 → 𝜒 ) |