Description: Restricted existential elimination rule of natural deduction. (Contributed by Glauco Siliprandi, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexlimddv2.1 | |- ( ph -> E. x e. A ps ) |
|
rexlimddv2.2 | |- ( ( ( ph /\ x e. A ) /\ ps ) -> ch ) |
||
Assertion | rexlimddv2 | |- ( ph -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimddv2.1 | |- ( ph -> E. x e. A ps ) |
|
2 | rexlimddv2.2 | |- ( ( ( ph /\ x e. A ) /\ ps ) -> ch ) |
|
3 | 2 | anasss | |- ( ( ph /\ ( x e. A /\ ps ) ) -> ch ) |
4 | 1 3 | rexlimddv | |- ( ph -> ch ) |