Metamath Proof Explorer


Theorem rexlimddv2

Description: Restricted existential elimination rule of natural deduction. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses rexlimddv2.1
|- ( ph -> E. x e. A ps )
rexlimddv2.2
|- ( ( ( ph /\ x e. A ) /\ ps ) -> ch )
Assertion rexlimddv2
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 rexlimddv2.1
 |-  ( ph -> E. x e. A ps )
2 rexlimddv2.2
 |-  ( ( ( ph /\ x e. A ) /\ ps ) -> ch )
3 2 anasss
 |-  ( ( ph /\ ( x e. A /\ ps ) ) -> ch )
4 1 3 rexlimddv
 |-  ( ph -> ch )