Description: Restricted existential elimination rule of natural deduction. (Contributed by Glauco Siliprandi, 5-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexlimddv2.1 | |- ( ph -> E. x e. A ps ) |
|
| rexlimddv2.2 | |- ( ( ( ph /\ x e. A ) /\ ps ) -> ch ) |
||
| Assertion | rexlimddv2 | |- ( ph -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimddv2.1 | |- ( ph -> E. x e. A ps ) |
|
| 2 | rexlimddv2.2 | |- ( ( ( ph /\ x e. A ) /\ ps ) -> ch ) |
|
| 3 | 2 | anasss | |- ( ( ph /\ ( x e. A /\ ps ) ) -> ch ) |
| 4 | 1 3 | rexlimddv | |- ( ph -> ch ) |