Step |
Hyp |
Ref |
Expression |
1 |
|
climuz.k |
⊢ Ⅎ 𝑘 𝐹 |
2 |
|
climuz.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climuz.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
climuz.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℂ ) |
5 |
2 3 4
|
climuzlem |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑦 ) ) ) |
6 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑥 ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑦 ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑥 ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑦 ↔ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑥 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑗 ) ) |
10 |
9
|
raleqdv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑥 ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑥 ) ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑘 abs |
12 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑙 |
13 |
1 12
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑘 − |
15 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
16 |
13 14 15
|
nfov |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) |
17 |
11 16
|
nffv |
⊢ Ⅎ 𝑘 ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑘 < |
19 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
20 |
17 18 19
|
nfbr |
⊢ Ⅎ 𝑘 ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑥 |
21 |
|
nfv |
⊢ Ⅎ 𝑙 ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 |
22 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑘 ) ) |
23 |
22
|
fvoveq1d |
⊢ ( 𝑙 = 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
24 |
23
|
breq1d |
⊢ ( 𝑙 = 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
25 |
20 21 24
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
26 |
25
|
a1i |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
27 |
10 26
|
bitrd |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
28 |
27
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
29 |
28
|
a1i |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
30 |
8 29
|
bitrd |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑦 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
31 |
30
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑦 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
32 |
31
|
anbi2i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑦 ) ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
33 |
32
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − 𝐴 ) ) < 𝑦 ) ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
34 |
5 33
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |