| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climuz.k |  |-  F/_ k F | 
						
							| 2 |  | climuz.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | climuz.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 4 |  | climuz.f |  |-  ( ph -> F : Z --> CC ) | 
						
							| 5 | 2 3 4 | climuzlem |  |-  ( ph -> ( F ~~> A <-> ( A e. CC /\ A. y e. RR+ E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < y ) ) ) | 
						
							| 6 |  | breq2 |  |-  ( y = x -> ( ( abs ` ( ( F ` l ) - A ) ) < y <-> ( abs ` ( ( F ` l ) - A ) ) < x ) ) | 
						
							| 7 | 6 | ralbidv |  |-  ( y = x -> ( A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < y <-> A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < x ) ) | 
						
							| 8 | 7 | rexbidv |  |-  ( y = x -> ( E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < y <-> E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < x ) ) | 
						
							| 9 |  | fveq2 |  |-  ( i = j -> ( ZZ>= ` i ) = ( ZZ>= ` j ) ) | 
						
							| 10 | 9 | raleqdv |  |-  ( i = j -> ( A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < x <-> A. l e. ( ZZ>= ` j ) ( abs ` ( ( F ` l ) - A ) ) < x ) ) | 
						
							| 11 |  | nfcv |  |-  F/_ k abs | 
						
							| 12 |  | nfcv |  |-  F/_ k l | 
						
							| 13 | 1 12 | nffv |  |-  F/_ k ( F ` l ) | 
						
							| 14 |  | nfcv |  |-  F/_ k - | 
						
							| 15 |  | nfcv |  |-  F/_ k A | 
						
							| 16 | 13 14 15 | nfov |  |-  F/_ k ( ( F ` l ) - A ) | 
						
							| 17 | 11 16 | nffv |  |-  F/_ k ( abs ` ( ( F ` l ) - A ) ) | 
						
							| 18 |  | nfcv |  |-  F/_ k < | 
						
							| 19 |  | nfcv |  |-  F/_ k x | 
						
							| 20 | 17 18 19 | nfbr |  |-  F/ k ( abs ` ( ( F ` l ) - A ) ) < x | 
						
							| 21 |  | nfv |  |-  F/ l ( abs ` ( ( F ` k ) - A ) ) < x | 
						
							| 22 |  | fveq2 |  |-  ( l = k -> ( F ` l ) = ( F ` k ) ) | 
						
							| 23 | 22 | fvoveq1d |  |-  ( l = k -> ( abs ` ( ( F ` l ) - A ) ) = ( abs ` ( ( F ` k ) - A ) ) ) | 
						
							| 24 | 23 | breq1d |  |-  ( l = k -> ( ( abs ` ( ( F ` l ) - A ) ) < x <-> ( abs ` ( ( F ` k ) - A ) ) < x ) ) | 
						
							| 25 | 20 21 24 | cbvralw |  |-  ( A. l e. ( ZZ>= ` j ) ( abs ` ( ( F ` l ) - A ) ) < x <-> A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) | 
						
							| 26 | 25 | a1i |  |-  ( i = j -> ( A. l e. ( ZZ>= ` j ) ( abs ` ( ( F ` l ) - A ) ) < x <-> A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) ) | 
						
							| 27 | 10 26 | bitrd |  |-  ( i = j -> ( A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < x <-> A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) ) | 
						
							| 28 | 27 | cbvrexvw |  |-  ( E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) | 
						
							| 29 | 28 | a1i |  |-  ( y = x -> ( E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) ) | 
						
							| 30 | 8 29 | bitrd |  |-  ( y = x -> ( E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < y <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) ) | 
						
							| 31 | 30 | cbvralvw |  |-  ( A. y e. RR+ E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < y <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) | 
						
							| 32 | 31 | anbi2i |  |-  ( ( A e. CC /\ A. y e. RR+ E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < y ) <-> ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) ) | 
						
							| 33 | 32 | a1i |  |-  ( ph -> ( ( A e. CC /\ A. y e. RR+ E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < y ) <-> ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) | 
						
							| 34 | 5 33 | bitrd |  |-  ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) |