Step |
Hyp |
Ref |
Expression |
1 |
|
climuz.k |
|- F/_ k F |
2 |
|
climuz.m |
|- ( ph -> M e. ZZ ) |
3 |
|
climuz.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
climuz.f |
|- ( ph -> F : Z --> CC ) |
5 |
2 3 4
|
climuzlem |
|- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. y e. RR+ E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < y ) ) ) |
6 |
|
breq2 |
|- ( y = x -> ( ( abs ` ( ( F ` l ) - A ) ) < y <-> ( abs ` ( ( F ` l ) - A ) ) < x ) ) |
7 |
6
|
ralbidv |
|- ( y = x -> ( A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < y <-> A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < x ) ) |
8 |
7
|
rexbidv |
|- ( y = x -> ( E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < y <-> E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < x ) ) |
9 |
|
fveq2 |
|- ( i = j -> ( ZZ>= ` i ) = ( ZZ>= ` j ) ) |
10 |
9
|
raleqdv |
|- ( i = j -> ( A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < x <-> A. l e. ( ZZ>= ` j ) ( abs ` ( ( F ` l ) - A ) ) < x ) ) |
11 |
|
nfcv |
|- F/_ k abs |
12 |
|
nfcv |
|- F/_ k l |
13 |
1 12
|
nffv |
|- F/_ k ( F ` l ) |
14 |
|
nfcv |
|- F/_ k - |
15 |
|
nfcv |
|- F/_ k A |
16 |
13 14 15
|
nfov |
|- F/_ k ( ( F ` l ) - A ) |
17 |
11 16
|
nffv |
|- F/_ k ( abs ` ( ( F ` l ) - A ) ) |
18 |
|
nfcv |
|- F/_ k < |
19 |
|
nfcv |
|- F/_ k x |
20 |
17 18 19
|
nfbr |
|- F/ k ( abs ` ( ( F ` l ) - A ) ) < x |
21 |
|
nfv |
|- F/ l ( abs ` ( ( F ` k ) - A ) ) < x |
22 |
|
fveq2 |
|- ( l = k -> ( F ` l ) = ( F ` k ) ) |
23 |
22
|
fvoveq1d |
|- ( l = k -> ( abs ` ( ( F ` l ) - A ) ) = ( abs ` ( ( F ` k ) - A ) ) ) |
24 |
23
|
breq1d |
|- ( l = k -> ( ( abs ` ( ( F ` l ) - A ) ) < x <-> ( abs ` ( ( F ` k ) - A ) ) < x ) ) |
25 |
20 21 24
|
cbvralw |
|- ( A. l e. ( ZZ>= ` j ) ( abs ` ( ( F ` l ) - A ) ) < x <-> A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) |
26 |
25
|
a1i |
|- ( i = j -> ( A. l e. ( ZZ>= ` j ) ( abs ` ( ( F ` l ) - A ) ) < x <-> A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) ) |
27 |
10 26
|
bitrd |
|- ( i = j -> ( A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < x <-> A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) ) |
28 |
27
|
cbvrexvw |
|- ( E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) |
29 |
28
|
a1i |
|- ( y = x -> ( E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) ) |
30 |
8 29
|
bitrd |
|- ( y = x -> ( E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < y <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) ) |
31 |
30
|
cbvralvw |
|- ( A. y e. RR+ E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < y <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) |
32 |
31
|
anbi2i |
|- ( ( A e. CC /\ A. y e. RR+ E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < y ) <-> ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) ) |
33 |
32
|
a1i |
|- ( ph -> ( ( A e. CC /\ A. y e. RR+ E. i e. Z A. l e. ( ZZ>= ` i ) ( abs ` ( ( F ` l ) - A ) ) < y ) <-> ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) |
34 |
5 33
|
bitrd |
|- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) |