Metamath Proof Explorer


Theorem climuz

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climuz.k _kF
climuz.m φM
climuz.z Z=M
climuz.f φF:Z
Assertion climuz φFAAx+jZkjFkA<x

Proof

Step Hyp Ref Expression
1 climuz.k _kF
2 climuz.m φM
3 climuz.z Z=M
4 climuz.f φF:Z
5 2 3 4 climuzlem φFAAy+iZliFlA<y
6 breq2 y=xFlA<yFlA<x
7 6 ralbidv y=xliFlA<yliFlA<x
8 7 rexbidv y=xiZliFlA<yiZliFlA<x
9 fveq2 i=ji=j
10 9 raleqdv i=jliFlA<xljFlA<x
11 nfcv _kabs
12 nfcv _kl
13 1 12 nffv _kFl
14 nfcv _k
15 nfcv _kA
16 13 14 15 nfov _kFlA
17 11 16 nffv _kFlA
18 nfcv _k<
19 nfcv _kx
20 17 18 19 nfbr kFlA<x
21 nfv lFkA<x
22 fveq2 l=kFl=Fk
23 22 fvoveq1d l=kFlA=FkA
24 23 breq1d l=kFlA<xFkA<x
25 20 21 24 cbvralw ljFlA<xkjFkA<x
26 25 a1i i=jljFlA<xkjFkA<x
27 10 26 bitrd i=jliFlA<xkjFkA<x
28 27 cbvrexvw iZliFlA<xjZkjFkA<x
29 28 a1i y=xiZliFlA<xjZkjFkA<x
30 8 29 bitrd y=xiZliFlA<yjZkjFkA<x
31 30 cbvralvw y+iZliFlA<yx+jZkjFkA<x
32 31 anbi2i Ay+iZliFlA<yAx+jZkjFkA<x
33 32 a1i φAy+iZliFlA<yAx+jZkjFkA<x
34 5 33 bitrd φFAAx+jZkjFkA<x