Metamath Proof Explorer


Theorem climuzlem

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climuzlem.1 φM
climuzlem.2 Z=M
climuzlem.3 φF:Z
Assertion climuzlem φFAAx+jZkjFkA<x

Proof

Step Hyp Ref Expression
1 climuzlem.1 φM
2 climuzlem.2 Z=M
3 climuzlem.3 φF:Z
4 climcl FAA
5 4 adantl φFAA
6 id FAFA
7 climrel Rel
8 7 brrelex1i FAFV
9 eqidd FAkFk=Fk
10 8 9 clim FAFAAx+jkjFkFkA<x
11 6 10 mpbid FAAx+jkjFkFkA<x
12 11 simprd FAx+jkjFkFkA<x
13 12 adantl φFAx+jkjFkFkA<x
14 simpr φjkjFkFkA<xjkjFkFkA<x
15 2 rexuz3 MjZkjFkFkA<xjkjFkFkA<x
16 1 15 syl φjZkjFkFkA<xjkjFkFkA<x
17 16 adantr φjkjFkFkA<xjZkjFkFkA<xjkjFkFkA<x
18 14 17 mpbird φjkjFkFkA<xjZkjFkFkA<x
19 simpr FkFkA<xFkA<x
20 19 ralimi kjFkFkA<xkjFkA<x
21 20 reximi jZkjFkFkA<xjZkjFkA<x
22 21 a1i φjkjFkFkA<xjZkjFkFkA<xjZkjFkA<x
23 18 22 mpd φjkjFkFkA<xjZkjFkA<x
24 23 ex φjkjFkFkA<xjZkjFkA<x
25 24 adantr φx+jkjFkFkA<xjZkjFkA<x
26 25 ralimdva φx+jkjFkFkA<xx+jZkjFkA<x
27 26 adantr φFAx+jkjFkFkA<xx+jZkjFkA<x
28 13 27 mpd φFAx+jZkjFkA<x
29 5 28 jca φFAAx+jZkjFkA<x
30 simprl φAx+jZkjFkA<xA
31 nfv jφ
32 nfre1 jjkjFkFkA<x
33 2 uzssz2 Z
34 33 sseli jZj
35 34 3ad2ant2 φjZkjFkA<xj
36 simpll φjZkjφ
37 2 uztrn2 jZkjkZ
38 37 adantll φjZkjkZ
39 3 ffvelcdmda φkZFk
40 36 38 39 syl2anc φjZkjFk
41 40 adantr φjZkjFkA<xFk
42 simpr φjZkjFkA<xFkA<x
43 41 42 jca φjZkjFkA<xFkFkA<x
44 43 ex φjZkjFkA<xFkFkA<x
45 44 ralimdva φjZkjFkA<xkjFkFkA<x
46 45 3impia φjZkjFkA<xkjFkFkA<x
47 rspe jkjFkFkA<xjkjFkFkA<x
48 35 46 47 syl2anc φjZkjFkA<xjkjFkFkA<x
49 48 3exp φjZkjFkA<xjkjFkFkA<x
50 31 32 49 rexlimd φjZkjFkA<xjkjFkFkA<x
51 50 ralimdv φx+jZkjFkA<xx+jkjFkFkA<x
52 51 imp φx+jZkjFkA<xx+jkjFkFkA<x
53 52 adantrl φAx+jZkjFkA<xx+jkjFkFkA<x
54 30 53 jca φAx+jZkjFkA<xAx+jkjFkFkA<x
55 2 fvexi ZV
56 55 a1i φZV
57 3 56 fexd φFV
58 eqidd φkFk=Fk
59 57 58 clim φFAAx+jkjFkFkA<x
60 59 adantr φAx+jZkjFkA<xFAAx+jkjFkFkA<x
61 54 60 mpbird φAx+jZkjFkA<xFA
62 29 61 impbida φFAAx+jZkjFkA<x