Metamath Proof Explorer


Theorem climxlim2lem

Description: In this lemma for climxlim2 there is the additional assumption that the converging function is complex-valued on the whole domain. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climxlim2lem.1 φM
climxlim2lem.2 Z=M
climxlim2lem.3 φF:Z*
climxlim2lem.4 φF:Z
climxlim2lem.5 φFA
Assertion climxlim2lem φF*A

Proof

Step Hyp Ref Expression
1 climxlim2lem.1 φM
2 climxlim2lem.2 Z=M
3 climxlim2lem.3 φF:Z*
4 climxlim2lem.4 φF:Z
5 climxlim2lem.5 φFA
6 5 adantr φAFA
7 1 adantr φAM
8 3 adantr φAF:Z*
9 simpr φAA
10 7 2 8 9 xlimclim2 φAF*AFA
11 6 10 mpbird φAF*A
12 4 ffvelcdmda φkZFk
13 12 anim1i φkZFkAFkFkA
14 13 adantllr φy*yyAxyAkZFkAFkFkA
15 3 adantr φy*yyAxyAF:Z*
16 15 ffvelcdmda φy*yyAxyAkZFk*
17 simplr φy*yyAxyAkZy*yyAxyA
18 eleq1 y=FkyFk
19 neeq1 y=FkyAFkA
20 18 19 anbi12d y=FkyyAFkFkA
21 fvoveq1 y=FkyA=FkA
22 21 breq2d y=FkxyAxFkA
23 20 22 imbi12d y=FkyyAxyAFkFkAxFkA
24 23 rspcva Fk*y*yyAxyAFkFkAxFkA
25 16 17 24 syl2anc φy*yyAxyAkZFkFkAxFkA
26 25 adantr φy*yyAxyAkZFkAFkFkAxFkA
27 14 26 mpd φy*yyAxyAkZFkAxFkA
28 27 ex φy*yyAxyAkZFkAxFkA
29 28 ralrimiva φy*yyAxyAkZFkAxFkA
30 29 ad4ant14 φ¬Ax+y*yyAxyAkZFkAxFkA
31 climcl FAA
32 5 31 syl φA
33 32 adantr φ¬AA
34 simpr φ¬A¬A
35 prfi +∞−∞Fin
36 35 a1i φ¬A+∞−∞Fin
37 df-xr *=+∞−∞
38 33 34 36 37 cnrefiisp φ¬Ax+y*yyAxyA
39 30 38 reximddv3 φ¬Ax+kZFkAxFkA
40 nfv kφx+
41 nfra1 kkZFkAxFkA
42 40 41 nfan kφx+kZFkAxFkA
43 nfv kjZ
44 42 43 nfan kφx+kZFkAxFkAjZ
45 nfra1 kkjFkA<x
46 44 45 nfan kφx+kZFkAxFkAjZkjFkA<x
47 simpll kZFkAxFkAjZkjkZFkAxFkA
48 2 uztrn2 jZkjkZ
49 48 adantll kZFkAxFkAjZkjkZ
50 rspa kZFkAxFkAkZFkAxFkA
51 47 49 50 syl2anc kZFkAxFkAjZkjFkAxFkA
52 neqne ¬Fk=AFkA
53 51 52 impel kZFkAxFkAjZkj¬Fk=AxFkA
54 53 ad5ant2345 φx+kZFkAxFkAjZkj¬Fk=AxFkA
55 54 adantllr φx+kZFkAxFkAjZkjFkA<xkj¬Fk=AxFkA
56 rspa kjFkA<xkjFkA<x
57 56 adantll φx+jZkjFkA<xkjFkA<x
58 4 ad2antrr φjZkjF:Z
59 48 adantll φjZkjkZ
60 58 59 ffvelcdmd φjZkjFk
61 60 adantlr φjZkjFkA<xkjFk
62 32 ad3antrrr φjZkjFkA<xkjA
63 61 62 subcld φjZkjFkA<xkjFkA
64 63 abscld φjZkjFkA<xkjFkA
65 64 adantl3r φx+jZkjFkA<xkjFkA
66 simpr φx+x+
67 66 ad3antrrr φx+jZkjFkA<xkjx+
68 67 rpred φx+jZkjFkA<xkjx
69 65 68 ltnled φx+jZkjFkA<xkjFkA<x¬xFkA
70 57 69 mpbid φx+jZkjFkA<xkj¬xFkA
71 70 adantl3r φx+kZFkAxFkAjZkjFkA<xkj¬xFkA
72 71 adantr φx+kZFkAxFkAjZkjFkA<xkj¬Fk=A¬xFkA
73 55 72 condan φx+kZFkAxFkAjZkjFkA<xkjFk=A
74 46 73 ralrimia φx+kZFkAxFkAjZkjFkA<xkjFk=A
75 nfcv _kF
76 75 1 2 4 climuz φFAAx+jZkjFkA<x
77 5 76 mpbid φAx+jZkjFkA<x
78 77 simprd φx+jZkjFkA<x
79 78 r19.21bi φx+jZkjFkA<x
80 79 adantr φx+kZFkAxFkAjZkjFkA<x
81 74 80 reximddv3 φx+kZFkAxFkAjZkjFk=A
82 81 adantllr φ¬Ax+kZFkAxFkAjZkjFk=A
83 39 82 rexlimddv2 φ¬AjZkjFk=A
84 nfv kφ¬AjZ
85 nfra1 kkjFk=A
86 84 85 nfan kφ¬AjZkjFk=A
87 3 ad3antrrr φ¬AjZkjFk=AF:Z*
88 simplr φ¬AjZkjFk=AjZ
89 2 uzid3 jZjj
90 fveq2 k=jFk=Fj
91 90 eqeq1d k=jFk=AFj=A
92 91 rspcva jjkjFk=AFj=A
93 89 92 sylan jZkjFk=AFj=A
94 93 3adant1 φjZkjFk=AFj=A
95 3 ffvelcdmda φjZFj*
96 95 3adant3 φjZkjFk=AFj*
97 94 96 eqeltrrd φjZkjFk=AA*
98 97 ad4ant134 φ¬AjZkjFk=AA*
99 rspa kjFk=AkjFk=A
100 99 adantll φ¬AjZkjFk=AkjFk=A
101 86 75 2 87 88 98 100 xlimconst2 φ¬AjZkjFk=AF*A
102 83 101 rexlimddv2 φ¬AF*A
103 11 102 pm2.61dan φF*A