Metamath Proof Explorer


Theorem climxlim2

Description: A sequence of extended reals, converging w.r.t. the standard topology on the complex numbers is a converging sequence w.r.t. the standard topology on the extended reals. This is non-trivial, because +oo and -oo could, in principle, be complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climxlim2.m ( 𝜑𝑀 ∈ ℤ )
climxlim2.z 𝑍 = ( ℤ𝑀 )
climxlim2.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
climxlim2.a ( 𝜑𝐹𝐴 )
Assertion climxlim2 ( 𝜑𝐹 ~~>* 𝐴 )

Proof

Step Hyp Ref Expression
1 climxlim2.m ( 𝜑𝑀 ∈ ℤ )
2 climxlim2.z 𝑍 = ( ℤ𝑀 )
3 climxlim2.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
4 climxlim2.a ( 𝜑𝐹𝐴 )
5 2 eluzelz2 ( 𝑗𝑍𝑗 ∈ ℤ )
6 5 ad2antlr ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℂ ) → 𝑗 ∈ ℤ )
7 eqid ( ℤ𝑗 ) = ( ℤ𝑗 )
8 3 adantr ( ( 𝜑𝑗𝑍 ) → 𝐹 : 𝑍 ⟶ ℝ* )
9 2 uzssd3 ( 𝑗𝑍 → ( ℤ𝑗 ) ⊆ 𝑍 )
10 9 adantl ( ( 𝜑𝑗𝑍 ) → ( ℤ𝑗 ) ⊆ 𝑍 )
11 8 10 fssresd ( ( 𝜑𝑗𝑍 ) → ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ* )
12 11 adantr ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℂ ) → ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℝ* )
13 simpr ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℂ ) → ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℂ )
14 4 adantr ( ( 𝜑𝑗𝑍 ) → 𝐹𝐴 )
15 2 fvexi 𝑍 ∈ V
16 15 a1i ( 𝜑𝑍 ∈ V )
17 3 16 fexd ( 𝜑𝐹 ∈ V )
18 climres ( ( 𝑗 ∈ ℤ ∧ 𝐹 ∈ V ) → ( ( 𝐹 ↾ ( ℤ𝑗 ) ) ⇝ 𝐴𝐹𝐴 ) )
19 5 17 18 syl2anr ( ( 𝜑𝑗𝑍 ) → ( ( 𝐹 ↾ ( ℤ𝑗 ) ) ⇝ 𝐴𝐹𝐴 ) )
20 14 19 mpbird ( ( 𝜑𝑗𝑍 ) → ( 𝐹 ↾ ( ℤ𝑗 ) ) ⇝ 𝐴 )
21 20 adantr ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℂ ) → ( 𝐹 ↾ ( ℤ𝑗 ) ) ⇝ 𝐴 )
22 6 7 12 13 21 climxlim2lem ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℂ ) → ( 𝐹 ↾ ( ℤ𝑗 ) ) ~~>* 𝐴 )
23 2 3 fuzxrpmcn ( 𝜑𝐹 ∈ ( ℝ*pm ℂ ) )
24 23 adantr ( ( 𝜑𝑗𝑍 ) → 𝐹 ∈ ( ℝ*pm ℂ ) )
25 5 adantl ( ( 𝜑𝑗𝑍 ) → 𝑗 ∈ ℤ )
26 24 25 xlimres ( ( 𝜑𝑗𝑍 ) → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ𝑗 ) ) ~~>* 𝐴 ) )
27 26 adantr ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℂ ) → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ𝑗 ) ) ~~>* 𝐴 ) )
28 22 27 mpbird ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℂ ) → 𝐹 ~~>* 𝐴 )
29 3 ffnd ( 𝜑𝐹 Fn 𝑍 )
30 climcl ( 𝐹𝐴𝐴 ∈ ℂ )
31 4 30 syl ( 𝜑𝐴 ∈ ℂ )
32 breldmg ( ( 𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧ 𝐹𝐴 ) → 𝐹 ∈ dom ⇝ )
33 17 31 4 32 syl3anc ( 𝜑𝐹 ∈ dom ⇝ )
34 1 2 29 33 climrescn ( 𝜑 → ∃ 𝑗𝑍 ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ℂ )
35 28 34 r19.29a ( 𝜑𝐹 ~~>* 𝐴 )