| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climxlim2.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | climxlim2.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | climxlim2.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 4 |  | climxlim2.a | ⊢ ( 𝜑  →  𝐹  ⇝  𝐴 ) | 
						
							| 5 | 2 | eluzelz2 | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℤ ) | 
						
							| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ )  →  𝑗  ∈  ℤ ) | 
						
							| 7 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ 𝑗 ) | 
						
							| 8 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 9 | 2 | uzssd3 | ⊢ ( 𝑗  ∈  𝑍  →  ( ℤ≥ ‘ 𝑗 )  ⊆  𝑍 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ℤ≥ ‘ 𝑗 )  ⊆  𝑍 ) | 
						
							| 11 | 8 10 | fssresd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ* ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ* ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝐹  ⇝  𝐴 ) | 
						
							| 15 | 2 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  𝑍  ∈  V ) | 
						
							| 17 | 3 16 | fexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 18 |  | climres | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝐹  ∈  V )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) )  ⇝  𝐴  ↔  𝐹  ⇝  𝐴 ) ) | 
						
							| 19 | 5 17 18 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) )  ⇝  𝐴  ↔  𝐹  ⇝  𝐴 ) ) | 
						
							| 20 | 14 19 | mpbird | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) )  ⇝  𝐴 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) )  ⇝  𝐴 ) | 
						
							| 22 | 6 7 12 13 21 | climxlim2lem | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) ~~>* 𝐴 ) | 
						
							| 23 | 2 3 | fuzxrpmcn | ⊢ ( 𝜑  →  𝐹  ∈  ( ℝ*  ↑pm  ℂ ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝐹  ∈  ( ℝ*  ↑pm  ℂ ) ) | 
						
							| 25 | 5 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  ℤ ) | 
						
							| 26 | 24 25 | xlimres | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ~~>* 𝐴  ↔  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) ~~>* 𝐴 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ )  →  ( 𝐹 ~~>* 𝐴  ↔  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) ~~>* 𝐴 ) ) | 
						
							| 28 | 22 27 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ )  →  𝐹 ~~>* 𝐴 ) | 
						
							| 29 | 3 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝑍 ) | 
						
							| 30 |  | climcl | ⊢ ( 𝐹  ⇝  𝐴  →  𝐴  ∈  ℂ ) | 
						
							| 31 | 4 30 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 32 |  | breldmg | ⊢ ( ( 𝐹  ∈  V  ∧  𝐴  ∈  ℂ  ∧  𝐹  ⇝  𝐴 )  →  𝐹  ∈  dom   ⇝  ) | 
						
							| 33 | 17 31 4 32 | syl3anc | ⊢ ( 𝜑  →  𝐹  ∈  dom   ⇝  ) | 
						
							| 34 | 1 2 29 33 | climrescn | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ ) | 
						
							| 35 | 28 34 | r19.29a | ⊢ ( 𝜑  →  𝐹 ~~>* 𝐴 ) |