| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climxlim2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
climxlim2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
climxlim2.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
| 4 |
|
climxlim2.a |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
| 5 |
2
|
eluzelz2 |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
| 6 |
5
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ ) → 𝑗 ∈ ℤ ) |
| 7 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑗 ) |
| 8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
| 9 |
2
|
uzssd3 |
⊢ ( 𝑗 ∈ 𝑍 → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
| 11 |
8 10
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ* ) |
| 12 |
11
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ* ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ ) |
| 14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐹 ⇝ 𝐴 ) |
| 15 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
| 17 |
3 16
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 18 |
|
climres |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝐹 ∈ V ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
| 19 |
5 17 18
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
| 20 |
14 19
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ⇝ 𝐴 ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ⇝ 𝐴 ) |
| 22 |
6 7 12 13 21
|
climxlim2lem |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ~~>* 𝐴 ) |
| 23 |
2 3
|
fuzxrpmcn |
⊢ ( 𝜑 → 𝐹 ∈ ( ℝ* ↑pm ℂ ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐹 ∈ ( ℝ* ↑pm ℂ ) ) |
| 25 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ℤ ) |
| 26 |
24 25
|
xlimres |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ~~>* 𝐴 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ ) → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ~~>* 𝐴 ) ) |
| 28 |
22 27
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ ) → 𝐹 ~~>* 𝐴 ) |
| 29 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
| 30 |
|
climcl |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) |
| 31 |
4 30
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 32 |
|
breldmg |
⊢ ( ( 𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 ∈ dom ⇝ ) |
| 33 |
17 31 4 32
|
syl3anc |
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) |
| 34 |
1 2 29 33
|
climrescn |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℂ ) |
| 35 |
28 34
|
r19.29a |
⊢ ( 𝜑 → 𝐹 ~~>* 𝐴 ) |