Step |
Hyp |
Ref |
Expression |
1 |
|
dfxlim2v.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
dfxlim2v.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
dfxlim2v.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
4 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ 𝐴 ∈ ℝ ) → 𝐹 ~~>* 𝐴 ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝑀 ∈ ℤ ) |
6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
8 |
5 2 6 7
|
xlimclim2 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( 𝐹 ~~>* 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
9 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ 𝐴 ∈ ℝ ) → ( 𝐹 ~~>* 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
10 |
4 9
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ 𝐴 ∈ ℝ ) → 𝐹 ⇝ 𝐴 ) |
11 |
10
|
3mix1d |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ 𝐴 ∈ ℝ ) → ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) ) |
12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ 𝐴 = -∞ ) → 𝐴 = -∞ ) |
13 |
|
simpl |
⊢ ( ( 𝐹 ~~>* 𝐴 ∧ 𝐴 = -∞ ) → 𝐹 ~~>* 𝐴 ) |
14 |
|
simpr |
⊢ ( ( 𝐹 ~~>* 𝐴 ∧ 𝐴 = -∞ ) → 𝐴 = -∞ ) |
15 |
13 14
|
breqtrd |
⊢ ( ( 𝐹 ~~>* 𝐴 ∧ 𝐴 = -∞ ) → 𝐹 ~~>* -∞ ) |
16 |
15
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ 𝐴 = -∞ ) → 𝐹 ~~>* -∞ ) |
17 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐹 |
18 |
17 1 2 3
|
xlimmnf |
⊢ ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ 𝐴 = -∞ ) → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
20 |
16 19
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ 𝐴 = -∞ ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
21 |
|
3mix2 |
⊢ ( ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) → ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) ) |
22 |
12 20 21
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ 𝐴 = -∞ ) → ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) ) |
23 |
22
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) ∧ 𝐴 = -∞ ) → ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) ) |
24 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) ∧ ¬ 𝐴 = -∞ ) → ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ) |
25 |
|
xlimcl |
⊢ ( 𝐹 ~~>* 𝐴 → 𝐴 ∈ ℝ* ) |
26 |
25
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ∈ ℝ* ) |
27 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) ∧ ¬ 𝐴 = -∞ ) → ¬ 𝐴 ∈ ℝ ) |
28 |
|
neqne |
⊢ ( ¬ 𝐴 = -∞ → 𝐴 ≠ -∞ ) |
29 |
28
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ≠ -∞ ) |
30 |
26 27 29
|
xrnmnfpnf |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 = +∞ ) |
31 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ 𝐴 = +∞ ) → 𝐴 = +∞ ) |
32 |
|
simpl |
⊢ ( ( 𝐹 ~~>* 𝐴 ∧ 𝐴 = +∞ ) → 𝐹 ~~>* 𝐴 ) |
33 |
|
simpr |
⊢ ( ( 𝐹 ~~>* 𝐴 ∧ 𝐴 = +∞ ) → 𝐴 = +∞ ) |
34 |
32 33
|
breqtrd |
⊢ ( ( 𝐹 ~~>* 𝐴 ∧ 𝐴 = +∞ ) → 𝐹 ~~>* +∞ ) |
35 |
34
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ 𝐴 = +∞ ) → 𝐹 ~~>* +∞ ) |
36 |
17 1 2 3
|
xlimpnf |
⊢ ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
37 |
36
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ 𝐴 = +∞ ) → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
38 |
35 37
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ 𝐴 = +∞ ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
39 |
|
3mix3 |
⊢ ( ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) → ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) ) |
40 |
31 38 39
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ 𝐴 = +∞ ) → ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) ) |
41 |
24 30 40
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) ∧ ¬ 𝐴 = -∞ ) → ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) ) |
42 |
23 41
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) → ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) ) |
43 |
11 42
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* 𝐴 ) → ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) ) |
44 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝑀 ∈ ℤ ) |
45 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 ⇝ 𝐴 ) |
47 |
44 2 45 46
|
climxlim2 |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 ~~>* 𝐴 ) |
48 |
18
|
biimpar |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) → 𝐹 ~~>* -∞ ) |
49 |
48
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) → 𝐹 ~~>* -∞ ) |
50 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) → 𝐴 = -∞ ) |
51 |
49 50
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) → 𝐹 ~~>* 𝐴 ) |
52 |
36
|
biimpar |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) → 𝐹 ~~>* +∞ ) |
53 |
52
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) → 𝐹 ~~>* +∞ ) |
54 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) → 𝐴 = +∞ ) |
55 |
53 54
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) → 𝐹 ~~>* 𝐴 ) |
56 |
47 51 55
|
3jaodan |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝐹 ~~>* 𝐴 ) |
57 |
43 56
|
impbida |
⊢ ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |