Metamath Proof Explorer


Theorem dfxlim2v

Description: An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses dfxlim2v.1 ( 𝜑𝑀 ∈ ℤ )
dfxlim2v.2 𝑍 = ( ℤ𝑀 )
dfxlim2v.3 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
Assertion dfxlim2v ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dfxlim2v.1 ( 𝜑𝑀 ∈ ℤ )
2 dfxlim2v.2 𝑍 = ( ℤ𝑀 )
3 dfxlim2v.3 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
4 simplr ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ 𝐴 ∈ ℝ ) → 𝐹 ~~>* 𝐴 )
5 1 adantr ( ( 𝜑𝐴 ∈ ℝ ) → 𝑀 ∈ ℤ )
6 3 adantr ( ( 𝜑𝐴 ∈ ℝ ) → 𝐹 : 𝑍 ⟶ ℝ* )
7 simpr ( ( 𝜑𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ )
8 5 2 6 7 xlimclim2 ( ( 𝜑𝐴 ∈ ℝ ) → ( 𝐹 ~~>* 𝐴𝐹𝐴 ) )
9 8 adantlr ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ 𝐴 ∈ ℝ ) → ( 𝐹 ~~>* 𝐴𝐹𝐴 ) )
10 4 9 mpbid ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ 𝐴 ∈ ℝ ) → 𝐹𝐴 )
11 10 3mix1d ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ 𝐴 ∈ ℝ ) → ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) )
12 simpr ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ 𝐴 = -∞ ) → 𝐴 = -∞ )
13 simpl ( ( 𝐹 ~~>* 𝐴𝐴 = -∞ ) → 𝐹 ~~>* 𝐴 )
14 simpr ( ( 𝐹 ~~>* 𝐴𝐴 = -∞ ) → 𝐴 = -∞ )
15 13 14 breqtrd ( ( 𝐹 ~~>* 𝐴𝐴 = -∞ ) → 𝐹 ~~>* -∞ )
16 15 adantll ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ 𝐴 = -∞ ) → 𝐹 ~~>* -∞ )
17 nfcv 𝑘 𝐹
18 17 1 2 3 xlimmnf ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) )
19 18 ad2antrr ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ 𝐴 = -∞ ) → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) )
20 16 19 mpbid ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ 𝐴 = -∞ ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 )
21 3mix2 ( ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) → ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) )
22 12 20 21 syl2anc ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ 𝐴 = -∞ ) → ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) )
23 22 adantlr ( ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) ∧ 𝐴 = -∞ ) → ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) )
24 simpll ( ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) ∧ ¬ 𝐴 = -∞ ) → ( 𝜑𝐹 ~~>* 𝐴 ) )
25 xlimcl ( 𝐹 ~~>* 𝐴𝐴 ∈ ℝ* )
26 25 ad3antlr ( ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ∈ ℝ* )
27 simplr ( ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) ∧ ¬ 𝐴 = -∞ ) → ¬ 𝐴 ∈ ℝ )
28 neqne ( ¬ 𝐴 = -∞ → 𝐴 ≠ -∞ )
29 28 adantl ( ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ≠ -∞ )
30 26 27 29 xrnmnfpnf ( ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 = +∞ )
31 simpr ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ 𝐴 = +∞ ) → 𝐴 = +∞ )
32 simpl ( ( 𝐹 ~~>* 𝐴𝐴 = +∞ ) → 𝐹 ~~>* 𝐴 )
33 simpr ( ( 𝐹 ~~>* 𝐴𝐴 = +∞ ) → 𝐴 = +∞ )
34 32 33 breqtrd ( ( 𝐹 ~~>* 𝐴𝐴 = +∞ ) → 𝐹 ~~>* +∞ )
35 34 adantll ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ 𝐴 = +∞ ) → 𝐹 ~~>* +∞ )
36 17 1 2 3 xlimpnf ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) )
37 36 ad2antrr ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ 𝐴 = +∞ ) → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) )
38 35 37 mpbid ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ 𝐴 = +∞ ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) )
39 3mix3 ( ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) → ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) )
40 31 38 39 syl2anc ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ 𝐴 = +∞ ) → ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) )
41 24 30 40 syl2anc ( ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) ∧ ¬ 𝐴 = -∞ ) → ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) )
42 23 41 pm2.61dan ( ( ( 𝜑𝐹 ~~>* 𝐴 ) ∧ ¬ 𝐴 ∈ ℝ ) → ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) )
43 11 42 pm2.61dan ( ( 𝜑𝐹 ~~>* 𝐴 ) → ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) )
44 1 adantr ( ( 𝜑𝐹𝐴 ) → 𝑀 ∈ ℤ )
45 3 adantr ( ( 𝜑𝐹𝐴 ) → 𝐹 : 𝑍 ⟶ ℝ* )
46 simpr ( ( 𝜑𝐹𝐴 ) → 𝐹𝐴 )
47 44 2 45 46 climxlim2 ( ( 𝜑𝐹𝐴 ) → 𝐹 ~~>* 𝐴 )
48 18 biimpar ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) → 𝐹 ~~>* -∞ )
49 48 adantrl ( ( 𝜑 ∧ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ) → 𝐹 ~~>* -∞ )
50 simprl ( ( 𝜑 ∧ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ) → 𝐴 = -∞ )
51 49 50 breqtrrd ( ( 𝜑 ∧ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ) → 𝐹 ~~>* 𝐴 )
52 36 biimpar ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) → 𝐹 ~~>* +∞ )
53 52 adantrl ( ( 𝜑 ∧ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) → 𝐹 ~~>* +∞ )
54 simprl ( ( 𝜑 ∧ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) → 𝐴 = +∞ )
55 53 54 breqtrrd ( ( 𝜑 ∧ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) → 𝐹 ~~>* 𝐴 )
56 47 51 55 3jaodan ( ( 𝜑 ∧ ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) ) → 𝐹 ~~>* 𝐴 )
57 43 56 impbida ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) ) )